摘要
突触传递是温度敏感的,由于缺乏温度依赖性的突触电导分析模型,无法在神经系统建模时包括温度效应.忆阻器因其阻值连续可变和纳米尺寸的优势,被广泛认为可以模拟生物突触.本文通过改进忆阻保留值和考虑温度对离子迁移和扩散的影响,提出一种新的氧化钨忆阻器模型,此模型更加符合忆阻器的实际行为特性.首先,改进的数学模型不仅具有原模型的功能,同时可以拟合忆阻器的实际遗忘规律.另外,将此忆阻器作为生物突触耦合两个相同的HH神经元,能够体现温度对突触传递的影响,即温度上升引起氧空位迁移和扩散速率发生变化,导致忆阻器电导变化速率加快,进一步影响兴奋性突触后膜电位幅值和放电次数,而相关仿真结果与神经生理实验现象相符.本文的工作表明,改进的氧化钨忆阻器模型更适合作为仿生突触应用到神经形态系统中,将为指导忆阻器的设计制造工艺以提高其仿生突触性能提供参考,也为研究温度对突触传递的影响提供了一种新思路.
2020-11-23收到第1稿,2020-12-24收到修改稿.
大量研究表明,温度对脑功能有着显著影响.从医学角度来看,强烈建议严格控制患者在创伤修复时期的体
在单个神经元水平上,已经发现温度对脑功能的多种影响,主要包括细胞膜静息电位、离子通道的动态特性、突触传
忆阻器作为第四种基本电路元件,由美国加州大学的蔡少棠教授于1971年提
本文将基于文献[
忆阻器的一个重要应用是作为神经突触应用到神经形态系统
(1) |
(2) |
(3) |
(4) |
(5) |
(6) |

(a) 结构及实际i-v特性曲线
(a) Structure and the physical i-v curve

(b) 实际的遗忘曲线
(b) The physical forgetting curve
图1 氧化钨忆阻器的介绍(出自文献[
Fig.1 The introduction about WOx memristor(from Reference[
其中,
综合考虑,原忆阻器数学模型能较好地体现突触传递的功能.但由于原文采用了对称的正负电压扫描,致使忽略了一些重要细节,当施加不同数目的相同正脉冲时,撤去外加电压之后,忆阻器的电阻率衰减之后会维持不同的值,称之为保留值,如

(a) N=5

(b) N=10

(c) N=15
图2 原数学模型在不同数目外界刺激下的忆阻突触遗忘曲线
Fig.2 Memristive synaptic forgetting curve of the original mathematical model under different numbers of external stimulus
迁移和扩散是离子的常见运动形式,迁移是指在外界电场作用下的离子定向运动,而扩散主要是由浓度差引起的,同时温度和材料也是重要影响因素.基于上述原模型的不足,本文进行了如下两点改进.首先,将电导率的初始值和保留值分开考虑,为了简化分析,初始电导率取值为正常数,保留值主要受外加电压的作用,刺激频率越高持续时间越久,氧空位浓度越高,保留值越
(7) |
为有效跳跃距离,为尝试逃逸频率,为空位迁移激活能,为玻尔兹曼常数,为温度,代表单位电荷量,为外加电压,是缺氧层厚度,扩散时间为:
(8) |
(9) |
表示初始富氧层宽度,为扩散系数,代表温度趋近无穷大时的扩散系数,为扩散激活能.改进后的忆阻器模型部分公式如下:
(10) |
(11) |
(12) |
(13) |
(14) |
较之原模型,改进体现在如下方面:

图3 改进的忆阻器数学模型在连续正(负)扫描电压下仿结果,T=300K (a) v-t,i-t曲线;(b) i-v曲线;(c)-t曲线;(d)-t曲线
Fig. 3 The simulation results of the improved WOx memristor with continuous positive (negative) input, T=300K (a) v-t,i-t curve; (b) i-v curve; (c)-t curve; (d)-t curve

(a) N=5

(b) N=10

(c) N=15
图4 改进的数学模型在不同外界刺激数目下的忆阻突触遗忘曲线,T=300K
Fig.4 The memristive synaptic forgetting curve of the improved mathematical model under different numbers of external stimulus, T=300K
突触传递是温度敏感的,低温时突触前末端分泌的递质数量通常会减少,并且这种分泌发生所需的时间会增加.由于递质的释放主要通过突触前神经元的去极化和随后进入突触末端的钙离子量来控制,因此这些变量中的一个或两个都可能与突触传递的温度敏感性有关.通过引入的
进一步,我们仿真了在幅值1.1V持续时间1ms的单个脉冲刺激下,不同温度下忆阻突触权值的变化曲线图,如

图5 不同温度下忆阻突触权值变化曲线
Fig.5 The curves of memristive synapse weight change under different temperatures
突触是神经元之间在功能上发生联系的部位,也是信息传递的关键部位,按照功能可分为兴奋性突触和抑制性突触,前者使突触后细胞的兴奋性上升,后者反之.文献[
上文所述的氧化钨忆阻器,可以模仿生物突触的一系列可塑性,包括放电时间依赖可塑性(STDP)、双脉冲易化(PPF)、STP、LTP以及相互转换等.基于其电导变化率在[0,1]之间,单个忆阻器只能模仿兴奋性突触的功能.本文采用单个忆阻器对两个Hodkin-Huxley神经元模
(15) |
(16) |
(17) |
(18) |
(19) |
(20) |
(21) |
(22) |
(23) |
(24) |
(25) |

图6 基于忆阻器耦合的双HH神经元电路原理图
Fig.6 Schematic diagram of dual HH neurons circuit based on memristor coupling
微分方程组中,和分别表示突触前和突触后神经元膜电位,为外加刺激电流,为突触电流,为突触权重,正参数的引入是为了满足忆阻突触的工作电压范围.为膜电容,、分别为钠通道、钾通道最大电导,为漏电导;、、分别为钠通道、钾通道、漏通道的反转电势;m和n分别为钠通道、钾通道活化过程参数;h为钠通道失活过程参数.函数和函数是与膜电位有关而与时间无关的速率常数.
忆阻器是初值敏感元件,其电导率取决于历史电压和电流,不同初始值对突触后膜电位的影响十分显著.突触电流随着忆阻突触权值初值的增大而增大,当外部刺激电流总和()超过时,突触后神经元从静息态转变为周期峰放电状

图7 突触后膜电位随忆阻突触权值初值变化响应图
Fig.7 Response graph of postsynaptic membrane potential with initial value of memristive synaptic weight

图8 开关S打开时突触前/后神经元的放电状态
Fig.8 The firing state of pre/post-synaptic neurons when switch S is turned off

(a) T=290K

(b) T=310K

(c) T=330K
图9 不同温度下的突触后膜电位
Fig.9 Postsynaptic membrane potential at different temperatures
当忆阻突触的初始权值取值0.3,等于9,等于0,开关S处于打开状态时,突触前和突触后神经元放电状态如

图10 不同温度下的突触后膜电位
Fig.10 Postsynaptic membrane potential at different temperatures
当忆阻突触的初始权值取值0.65,开关S处于打开状态时,突触前神经元呈现周期性簇放电状态,突触后神经元经历短暂的簇放电状态之后转变为阈下振荡状态,变化情况如

图11 开关S打开时突触前/后神经元的放电状态
Fig.11 The firing state of pre/post-synaptic neurons when switch S is turned off

(a) T=290K

(b) T=310K

(c) T=330K
图12 不同温度下的突触后膜放电次数
Fig.12 Number of postsynaptic membrane discharges at different temperatures
本文在原氧化钨忆阻器数学模型的基础上,通过仿真呈现了其与忆阻器实测行为特性的差别,并考虑了温度对离子迁移和扩散的影响,基于此,引入了忆阻保留值和温度变量T.改进的模型不仅具有原模型的功能,并且可以拟合忆阻器的实际遗忘曲线以及符合同类型氧化物忆阻器的温度敏感特性.进一步,将此忆阻器作为生物突触耦合两个相同的HH神经元,通过对突触前后神经元施加不同的外部刺激电流,能够体现温度对突触传递的影响,即温度上升影响氧空位迁移和扩散速率,对应地引起兴奋性突触后膜电位的升高和放电次数的减少,数字仿真结果与神经生理现象相符.改进的氧化钨忆阻器模型更适合作为仿生突触应用到神经形态系统中,也为研究温度对突触传递的影响提供了一种新思路.
参考文献
Mrozek S,Vardon F,Geeraerts T,et al. Brain temperature:physiology and pathophysiology after brain injury. Anesthesiology Research and Practice,2012,2012:989487 [百度学术]
Badjatia N. Hyperthermia and fever control in brain injury.Critical Care Medicine,2009,37:S250 [百度学术]
Kufel D S,Wojcik G M. Analytical modelling of temperature effects on an AMPA-type synapse. Journal of Computational Neuroscience,2018,44(3):379~391 [百度学术]
Chua L O. Memristor the missing circuit element. IEEE Transactions on Circuit Theory,1971,18(5):507~519 [百度学术]
Strukov D B,Snider G S,Stewart D R,et al. The missing memristor found. Nature,2008,453(7191):80~83 [百度学术]
乔磊,茅晓晨.时滞诱发的忆阻型Hopfield神经网络的复杂动力学.动力学与控制学报,2019,17(4):384~390 [百度学术]
Qiao L,Mao X C. Delay-induced complicated dynamics of a memristive hopfield neural network. Journal of Dynamics and Control,2019,17(4):384~390(in Chinese) [百度学术]
曲良辉,都琳,胡海威,等.电磁刺激对FHN神经元系统的调控作用.动力学与控制学报,2020,18(1):40~48 [百度学术]
Qu L H,Du L,Hu H W,et al. Regulation of electromagnetic sti-mulation on FHN neuronal system. Journal of Dynamics and Control,2020,18(1):40~48(in Chinese) [百度学术]
Zhang J H,Liao X F. Effects of initial conditions on the synchronization of the coupled memristor neural circuits.Nonlinear Dynamics,2019,95(2):1269~1282 [百度学术]
Li Y,Xu L,Zhong Y P,et al. Associative learning with temporal contiguity in a memristive circuit for large-scale neuromorphic networks. Advanced Electronic Materials,2015,1(8):1500125 [百度学术]
Wu F,Gu H. Bifurcations of negative responses to positive feedback current mediated by memristor in a neuron model with bursting patterns. International Journal of Bifurcation and Chaos,2020,30(4):2030009 [百度学术]
Kim S,Du C,Sheridan P,et al. Experimental demonstrat-ion of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Letters,2015,15(3):2203~2211 [百度学术]
Graves C,Davila N,Mercedgrafals E J,et al. Temperature and field-dependent transport measurements in continuously tunable tantalum oxide memristors exposethe dominant state variable. Applied Physics Letters, 2017,110(12):123501 [百度学术]
Kocyigit A,Orak I,Aydogan Ş,et al. Temperature-depen-dent C-V characteristics of Au/ZnO/n-Si device obtain-ed by atomic layer deposition technique. Journal of Materials Science:Materials in Electronics,2017,28(8):5880~5886 [百度学术]
Kim S,Chen J,Chen Y C,et al. Neuronal dynamics in HfOx/AlOy-based homeothermic synaptic memristors with low-power and homogeneous resistive switching. Nanoscale, 2019,11(1):237~245 [百度学术]
Singh J,Raj B. Temperature dependent analytical mode-ling and simulations of nanoscale memristor. Engineering Science and Technology, an International Journal,2018,21(5):862~868 [百度学术]
Pahinkar D G,Basnet P,West M P,et al. Experimental and computational analysis of thermal environment in the operation of HfO2 memristors. AIP Advances,2020,10(3):035127 [百度学术]
孟凡一,段书凯,王丽丹,等.一种改进的WOx忆阻器模型及其突触特性分析.物理学报,2015,64(14):363~373 [百度学术]
Meng F Y,Duan S K,Wang L D,et al. Animproved WOx memristor model with synapse characteristic analysis. Acta Physica Sinica. 2015,64(14):363~373(in Chinese) [百度学术]
Wang Z,Xu H Y,Li X H,et al. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Advanced Functional Materials,2012,22(13):2759~2765 [百度学术]
Du C,Ma W,Chang T,et al. Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics. Advanced Functional Materials,2015,25(27):4290~4299 [百度学术]
Chang T,Jo S H,Kim K,et al. Synaptic behaviors and modeling of a metal oxide memristive device. Applied Physics A,2011,102(4):857~863 [百度学术]
Chang T,Jo S H,Lu W,et al. Shortterm memory to long-term memory transition in a nanoscale memristor. ACS Nano,2011,5(9):7669~7676 [百度学术]
Berggren L,Ederth J,Niklasson G A,et al. Electrical co-nductivity as a function of temperature in amorphous lithium tungsten oxide. Solar Energy Materials and Solar Cells,2004,84(1):329~336 [百度学术]
Charlton M P,Atwood H L. Synaptic transmission:temperature-sensitivity of calcium entry in presynaptic terminals. Brain Research,1979,170(3):543~546 [百度学术]
Hodgkin A L,Huxley A F. A quantitative description of embrane current and its application to conduction a-nd excitation in nerve. The Journal of physiology,1952,117(4):500~544 [百度学术]
曹金凤,韩芳.考虑树突整合效应的神经元网络的放电和同步特性.动力学与控制学报,2019,17(6):560~566 [百度学术]
Cao J F,Han F. Firing and synchronization characteristics ofneuronal networks considering dendritic integration effect. Journal of Dynamics and Control,2019,17(6):560~566(in Chinese) [百度学术]
Schiff S J,Somjen G G. The effects of temperature onsynaptic transmission in hippocampal tissue slices. Brain Research,1985,345(2):279~284 [百度学术]
Hook M J V. Temperature effects on synaptic transmi-ssion and neuronal function in the visual thalamus. PLoS ONE,2020,15(4):e0232451 [百度学术]