变分积分子在刚体动力学仿真中的应用
作者:
基金项目:

国家自然科学基金资助项目(12232009,12372002,12472001),辽宁大学2024年度基本科研项目:科研平台建设项目(LNU202404)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在对数学模型进行离散求解的过程中,传统的数值方法只考虑线性局部的数值稳定性,难以完全真实地长时间描述系统的动力学特性.本文采用李群描述刚体运动的位形,定义两种李群上的变分公式,根据离散Hamilton变分原理与离散Legendre变换分别推导出刚体系统的Hamilton体系下的一般格式的李群变分积分子和Hamel变分积分子.我们将这两种李群变分积分算法对3D车摆模型进行仿真计算,对比研究了算法在保持系统群结构、系统能量等方面的性质.仿真结果表明,Hamel变分积分子较一般格式的李群变分积分子精度更高,且能更好地保持系统群结构与能量.

    Abstract:

    In the process of discretely solving mathematical models, traditional numerical methods primarily focus on linear local numerical stability, making it difficult to accurately describe the system’s dynamic characteristics over long periods. This paper uses Lie groups to describe the configuration of rigid body motion and defines two variational formulas on Lie groups. By applying the discrete Hamiltonian variational principle and the discrete Legendre transformation, we derive the general forms of Lie group variational integrators and Hamel variational integrators for the Hamiltonian system of the rigid body. We simulate the 3D car pendulum model using both of these Lie group variational integrator algorithms and compare their performance in preserving the system’s group structure and energy. Simulation results show that the Hamel variational integrator achieves higher accuracy than the general form of the Lie group variational integrator and better preserves the system’s group structure and energy.

    参考文献
    相似文献
    引证文献
引用本文

牛奔,王焕民,朱进,刘世兴,郭永新.变分积分子在刚体动力学仿真中的应用[J].动力学与控制学报,2025,23(3):1~8; Niu Ben, Wang Huanmin, Zhu Jin, Liu Shixing, Guo Yongxin. Application of Variational Integrators in Rigid Body Dynamics Simulation[J]. Journal of Dynamics and Control,2025,23(3):1-8.

复制
分享
文章指标
  • 点击次数:162
  • 下载次数: 143
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-12-14
  • 最后修改日期:2025-02-09
  • 在线发布日期: 2025-03-25
文章二维码

微信公众号二维码

手机版网站二维码