分段光滑机械振动系统亚谐振动的复杂分岔
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

西安铁路职业技术学院2024年度立项课题(XTZY24K01)


Complex Bifurcation of Sub-harmonic Vibrations for a Class of Piecewise Smooth Mechanical Vibration System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以一类单自由度分段光滑机械振动系统为研究对象.数值计算两参数平面上亚谐振动的模式及分布区域,利用延拓打靶法对亚谐包含域内亚谐振动的分岔特征、稳定性及转迁规律进行了详细研究.结果表明:弹性碰撞振动系统中擦边分岔是连续可逆的.在亚谐包含域内,倍化型擦边分岔普遍存在,鞍结型擦边分岔和亚临界周期倍化分岔使系统响应发生跳跃和迟滞.高频亚谐包含域内多吸引子共存,混沌吸引子发生边界激变而突然消失.

    Abstract:

    A class of single-degree-of-freedom piecewise smooth mechanical vibration systems was studied. The modes and distribution regions of sub-harmonic vibrations in the two-parameter plane are numerically calculated. The bifurcation characteristics, stability and transmigration laws of sub-harmonic vibrations in the sub-harmonic inclusion regions are investigated in detail by using the continuation shooting method. The results show that the grazing bifurcation is continuous in the elastic impact system. In the sub-harmonic inclusion regions, PD-type grazing bifurcation are prevalent, and SN-type grazing bifurcation and subcritical period-doubling bifurcation cause jumps and hysteresis phenomenon of system response. Multiple attractors coexist in the high-frequency subharmonic inclusion regions, and the chaotic attractor ends up at the boundary crisis.

    参考文献
    相似文献
    引证文献
引用本文

张锦涛,吕小红,金花,刘芳璇.分段光滑机械振动系统亚谐振动的复杂分岔[J].动力学与控制学报,2024,22(7):29~37; Zhang Jintao, Lv Xiaohong, Jin Hua, Liu Fangxuan. Complex Bifurcation of Sub-harmonic Vibrations for a Class of Piecewise Smooth Mechanical Vibration System[J]. Journal of Dynamics and Control,2024,22(7):29-37.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-26
  • 最后修改日期:2024-01-22
  • 录用日期:
  • 在线发布日期: 2024-07-31
  • 出版日期:

微信公众号二维码

手机版网站二维码