en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

魏周超,E-mail:weizhouchao@163.com

中图分类号:O193;O317;O322

文献标识码:A

文章编号:1672-6553-2023-21(1)-081-008

DOI:10.6052/1672-6553-2022-004

参考文献 1
KOPEL M.Simple and complex adjustment dynamics in Cournot duopoly models [J].Chaos,Solitons & Fractals,1996,7(12):2031-2048.
参考文献 2
AGIZA H N.On the analysis of stability,bifurcation,chaos and chaos control of Kopel map [J].Chaos,Solitons & Fractals,1999,10(11):1909-1916.
参考文献 3
ANDERSON D R,MYRAN N G,WHITE D L.Basins of attraction in a Cournot duopoly model of Kopel [J].Journal of Difference Equations and Applications,2005,11(10):879-887.
参考文献 4
于晋臣.非线性动力系统的分岔研究 [D].北京:北京交通大学,2006.YU J C.Study on bifurcation of nonlinear dynamical system [D].Beijing:Beijing Jiaotong University,2006.(in Chinese)
参考文献 5
GOVAERTS W,GHAZIANI R K.Stable cycles in a cournot duopoly model of Kopel [J].Journal of Computational and Applied Mathematics,2008,218(2):247-258.
参考文献 6
于晋臣,张彩艳.Kopel 系统的分岔研究 [J].山东交通学院学报,2009,17(2):77-81.YU J C,ZHANG C Y.Study of bifurcation in Kopel system [J].Journal of Shandong Jiaotong University,2009,17(2):77-81.(in Chinese)
参考文献 7
于晋臣,张彩艳,彭名书.一类离散动力系统的混沌研究 [J].昆明理工大学学报,2009,34(4):101-104.YU J C,ZHANG C Y,PENG M S.Chaotic study of a discrete dynamical system [J].Journal of Kunming University of Science and Technology,2009,34(4):101-104.(in Chinese)
参考文献 8
WU W,CHEN Z,LP W H.Complex nonlinear dynamics and controlling chaos in a Cournot duopoly economic model [J].Nonlinear Analysis:Real World Applications,2010,11(5):4363-4377.
参考文献 9
吴文娟.复杂混沌系统的存在性及动力学特性分析[D].天津:南开大学,2010.WU W J.Existence and dynamic characteristics of complex chaotic systems [D].Tianjin:Nankai University,2010.(in Chinese)
参考文献 10
李波,何启志.Kopel寡头博弈模型的演化分析 [J].经济数学,2020,37(3):9-15.LI B,HE Q Z.Dynamic analysis of Kopel duopoly model [J].Journal of Quantitative Economics,2020,37(3):9-15.(in Chinese)
参考文献 11
GAO Y,LIU B,FENG W.Bifurcations and chaos in a nonlinear discrete time cournot duopoly game [J].Acta Mathematicae Applicatae Sinica,2014,30(4):951-964.
参考文献 12
BISCHI G I,KOPEL M.Equilibrium selection in a nonlinear duopoly game with adaptive expectations [J].Journal of Economic Behavior & Organization,2001,46(1):73-100.
参考文献 13
GAO X,ZHONG W,MEI S.Equilibrium stability of a nonlinear heterogeneous duopoly game with extrapolative foresight [J].Mathematics and Computers in Simulation,2012,82(11):2069-2078.
参考文献 14
ZHANG Y,GAO X.Equilibrium selection of a homogenous duopoly with extrapolative foresight [J].Communications in Nonlinear Science and Numerical Simulation,2019,67:366-374.
参考文献 15
LI B,HE Q,CHEN R.Neimark–Sacker bifurcation and the generate cases of Kopel oligopoly model with different adjustment speed [J].Advances in Difference Equations,2020,2020(1):1-18.
参考文献 16
CÁNOVAS J S,MUNOZ-GUILLERMO M.On the dynamics of Kopel’s cournot duopoly model [J].Applied Mathematics and Computation,2018,330:292-306.
参考文献 17
姜小霞.一类经济模型的分岔分析[D].北京:北京交通大学,2008.JIANG X X.The analysis of bifurcation of an economic model[D].Beijing:Beijing Jiaotong University,2008.(in Chinese)
参考文献 18
辛宝贵,马军海.一个不完全信息古诺博弈动力学模型的构建 [J].统计与决策,2009,(8):32-33.XIN B G,MA J H.Construction of a dynamic model of cournot game with incomplete information [J].Statistics & Decision,2009,(8):32-33.(in Chinese)
参考文献 19
MURAKAMI K.The invariant curve caused by Neimark-Sacker bifurcation [J].Dynamics of Continuous Discrete and Impulsive Systems Series A,2002,9:121-132.
参考文献 20
YUAN L G,YANG Q G.Bifurcation,invariant curve and hybrid control in a discrete-time predator-prey system [J].Applied Mathematical Modelling,2015,39(8):2345-2362.
参考文献 21
KHYAT T,KULENOVIC M R S,PILAV E.The invariant curve caused by Neimark-Sacker bifurcation of a perturbed Beverton-Holt difference equation [J].International Journal of Difference Equations,2017,12(2):267-280.
参考文献 22
MURAKAMI K.Stability and bifurcation in a discrete-time predator-prey model [J].Journal of Difference Equations and Applications,2007,13(10):911-925.
参考文献 23
KUZNETSOV Y A.Elements of applied bifurcation theory [M].New York:Springer-Verlag,2004.
参考文献 24
GUCKENHEIMER J,HOLMES P.Nonlinear oscillations,dynamical systems and bifurcations of vector fields [M].New York:Springer-Verlag,1983:453.
参考文献 25
杜文举,张建刚,俞建宁,等.三维离散类Lorenz系统的Neimark-Sacker分岔 [J].四川大学学报,2015,52(6):1297-1302.DU W J,ZHANG J G,YU J N,et al.An analysis of Neimark-Sacker bifurcation for a new three-dimensional discrete Lorenz-like system [J].Journal of Sichuan University,2015,52(6):1297-1302.(in Chinese)
参考文献 26
陈志强,王进良,李由.二维离散Duffing-Holmes 系统的分支与混沌研究 [J].动力学与控制学报,2017,15(4):324-329.CHEN Z Q,WANG J L,LI Y.Analysis on bifurcation and chaos of two-dimensional discrete Duffing-Holmes system [J].Journal of Dynamics and Control,2017,15(4):324-329.(in Chinese)
参考文献 27
陈苏,袁少良,周慧.二维离散抛物映射的分支 [J].动力学与控制学报,2019,17(2):97-103.CHEN S,YUAN S L,ZHOU H.Bifurcation of a 2-D discrete parabolic map [J].Journal of Dynamics and Control,2019,17(2):97-103.(in Chinese)
目录contents

    摘要

    首先阐述了Kopel系统的复杂动力学的研究进展.再基于分岔与规范型理论,给出了Kopel系统的Neimark-Sacker(N-S)分岔的一类新证明,并得到N-S分岔所产生不变曲线的近似表达式. 最后,对N-S分岔及不变曲线进行了数值模拟分析,验证了理论推导所得结果,并对N-S分岔中的扰动参数与不变曲线的近似表达式中参数之间的相互影响进行了分析.所有这些分析对Kopel系统的已有动力学研究是一个补充,对其经济现象的内在规律提供了理论支撑.

    Abstract

    Firstly, research progress of complex dynamics of the Kopel system is described. Based on the bifurcation and normal form theory, a new proof of Neimark-Sacker (N-S) bifurcation of Kopel system is given, and approximate expression of the invariant curve generated by N-S bifurcation is obtained. Finally, the N-S bifurcation and invariant curve are numerically simulated, which verifies the theoretical results, and the mutual effect between the perturbation parameters in N-S bifurcation and the parameters in the approximate expression of invariant curve is analyzed. All analyses are supplement to the existing research of the Kopel system and provide a theoretical support for the intrinsic law of economic phenomenon.

  • 引言

  • 19 96年,Kopel提出了Kopel系统[1],它是一个二维离散古诺双寡头模型,其表达式为

  • xn+1=(1-ρ)xn+ρμyn1-ynyn+1=(1-ρ)yn+ρμxn1-xn
    (1)
  • 其中,xnyn分别为公司xy在时间t内生产的物资数量,ρμ均为正参数,ρ可以理解为耦合参数,限制0<ρ<1.

  • 现回顾Kopel系统的整个研究过程.Kopel系统最早于1996年被提出[1].1999年,Agiza分析了其不动点的稳定性、混沌相图、分岔的数值模拟及混沌控制[2].2005年,Anderson.等分析了该系统的吸引盆问题[3].2006年,于晋臣研究了Kopel系统的跨临界分岔、倍周期分岔、叉式分岔及N-S分岔的数值模拟[4].2008年,Govaerts.等研究了其不动点及周期轨的稳定性[5].2009年,于晋臣等分析了系统的分岔及数值模拟[6],同年,于晋臣等[7]给出其倍周期分岔与混沌.2010年,吴文娟等[89]给出了系统的马蹄混沌、间歇混沌及混沌控制.2020年,李波等[10] 研究了其双参数分支情形-1:4共振.Gao等[11-18]分析了基于Kopel系统的推广模型的稳定性、分岔与混沌现象,这些分岔研究主要基于文献[23-27] 的方法.

  • Murakami提出分析N-S分岔的新方法,并成功得到验证[1922].现基于此新方法,再次给出Kopel系统(1)的N-S分岔的证明,得到分岔方向及稳定性结果,并计算出N-S分岔所产生的不变曲线的近似表达式,同时,对N-S分岔的扰动参数与不变曲线中的参数之间的关系进行了分析.这些是对Kopel系统(1)的内在复杂动力学研究的进一步补充完善.

  • 1 Kopel系统的N-S分岔及不变曲线

  • 由离散系统的不动点定义,令

  • (1-ρ) xn+ρμyn1-yn=xn, (1-ρ) yn+ρμxn1-xn=yn,

  • 得Kopel系统的四个非负不动点[1-8],分别记为

  • P1 (x*, y*) = (0, 0) , P2 (x*, y*) =μ-1μ, μ-1μ, μ>1, P3 (x*, y*) =P31, P32,

  • 其中,

  • P31=μ+1+ (μ+1) (μ-3) 2μ, P32=μ+1- (μ+1) (μ-3) 2μ,

  • μ≥3,不动点P4P3关于直线x=y对称.文献[46]取定一组特殊参数值,给出了P3不动点处的N-S分岔数值模拟,但对此系统N-S分岔的不变曲线的研究仍未涉及.

  • 系统(1)在不动点处的雅可比矩阵为

  • J=1-ρρμ-2ρμyρμ-2ρμx1-ρ(x*,y*)
    (2)
  • 其特征方程为

  • λ2-2 (1-ρ) λ+ (1-ρ) 2- (ρμ-2ρμx*) (ρμ-2ρμy*) =0

  • 则特征值

  • λ1, 2 (x*, y*) = (1-ρ) ±ρμ (1-2x*) (1-2y*) .

  • 现在分析P3处的N-S分岔及分岔所产生的不变曲线的近似表达式.

  • 引理1[22] 给定二维方阵A,如果迹trA及行列式det A满足|trA|-1≤detA =1,则A的特征值为λ=e±iω,其中ω=cos-1(trA/2),i为虚数单位.

  • 引理2 如果0<ρ<1,μ>1+ 6,则当ρ=2/(μ2-2μ-3)时,系统(1)在不动点P3处的雅可比矩阵有一对共轭纯虚数特征值λ=e±iω,其中,ω=cos-1(1-ρ),并且λ满足

  • (i) λj1 (j=1, 2, 3, 4)

  • (ii) d|λ|dρρ=2μ2-2μ-3=1>0.

  • 证明:(i)Kopel系统(1)在不动点P3处的雅可比矩阵为

  • A=1-ρA12A211-ρ
    (3)
  • 其中

  • A12=-ρ[1- (μ+1) (μ-3) ], A21=-ρ[1+ (μ+1) (μ-3) ],

  • trA=21-ρdetA=μ2-2μ-3ρ2-2ρ+1,由0<ρ<1及ρ=2/μ2-2μ-3,故|trA|-1≤1,且detA =1,又μ>1+6,也保证了0<ρ<1,即此引理的三个条件是不冲突的,是相容的.因此,由引理1,系统(1)在P3处的雅可比矩阵有一对共轭纯虚数特征值λ=e±iω,其中ω=cos-1(1-ρ),又λj=e±iωj=cosjω±isinjω,因 0<cos ω=1-ρ<1,故ω0π22π3π,从而cos()≠1,得λj≠1(j=1,2,3,4).

  • (ii)λ=e±iω是一对共轭纯虚数,故|λ|2=λλ-=detA,得|λ|=detA12,又当ρ=2μ2-2μ-3时,detA =1.又

  • detA=μ2-2μ-3ρ2-2ρ+1

  • ddρdetA=2μ2-2μ-3ρ-2,从而

  • d|λ|dρρ=2μ2-2μ-3=12(detA)-12×(detA)'ρ=2μ2-2μ-3=10
    (4)
  • 证毕.

  • 由文献[24]的定理3.5.2可知,当0<ρ<1,μ>1+6ρ=2μ2-2μ-3时,Kopel系统(1)在不动点P3处已经满足了文献[24]的定理3.5.2 的(SH1)与(SH2)条件,现Kopel系统(1)可能会发生N-S分岔.同时,存在光滑的坐标变换h,采用文献[24]的记号,使得系统(1)可转化为极坐标形式r+dμ-μ0r+ar3θ+c+br2 +高阶项.

  • 还需验证条件(SH3):r3的系数a≠0.当0<ρ<1,μ>1+6ρ=2μ2-2μ-3时,对μρ取一般值,由文献[2324]的方法或文献[1922]的方法计算a,即使利用Mathematica软件计算r3的系数都非常困难.下面将在一组特殊参数下,利用文献[1922]新方法分析N-S分岔并给出不变曲线的近似表达式,有别于文献[2324]的方法.

  • 引理3 如果ρ=2μ2-2μ-3,则系统(1)在不动点P3处的雅可比矩阵的特征值λ=e±iω所对应的特征向量为

  • q=-iμ2-2μ-41+ (μ+1) (μ-3) , 1T

  • p=iμ2-2μ-4-1+(μ+1)(μ-3),1T
    (5)
  • qp满足Aq=λqpA=λppq=2ω=cos-11-ρ.

  • 证明:矩阵A的特征方程

  • λ2-21-ρλ+μ2-2μ-3ρ2-2ρ+1=0,其中

  • λ=eiω=cos (ω) +isin (ω) = (1-ρ) +i1- (1-ρ) 2=μ2-2μ-5+2iμ2-2μ-4μ2-2μ-3,

  • 易验证Aq=λqpA=λpρ.此处ρρ分别是A的右特征向量与左特征向量.证毕.

  • 现基于文献 [1922]的新方法,选取μ=5,ρ=2μ2-2μ-3=16的特殊情形进行分析.此组参数情形下,引理2与引理3仍是成立的.

  • 定理1 当ρ=16μ=5时,系统(1)在不动点P3处发生N-S分岔.对参数ρ进行扰动ρ+ε1ε1是充分小的扰动参数,那么,当ε1>0时,存在一个稳定的闭不变曲线,且其近似表达式为

  • xn*yn*x*y*+2r0Reqeiθ+r02ReK20e2iθ+K11
    (6)
  • 其中

  • x*y*=3+353-35, q=-111+23i1, r0=ε7.1851,

  • K20=5171+233+ (4511+3533) i48 (13+43) 5-177-353+ (2533-1511) i48 (13+43) ,

  • K11=5+653-39-12365+75339+123,

  • ε是一个适当小的正数,θ为旋转角度.

  • 证明:由于ρ=16μ=5,因此,引理2及引理3的结论都成立.现在进一步分析N-S分岔及分岔所产生的不变曲线的近似表达式.

  • 首先,把不动点P3平移到原点,作变换un=xn-x*vn=yn-y*,且

  • (1-ρ) x*+ρμy*1-y*=x*, (1-ρ) y*+ρμx*1-x*=y*.

  • un+1=(1-ρ)un+ρμ1-2y*vn-ρμvn2vn+1=(1-ρ)vn+ρμ1-2x*un-ρμun2
    (7)
  • 由引理2及分岔理论,系统(7)可转化为规范型

  • zn+1=λ(ε)zn+c(ε)zn2z-+O(4)
    (8)
  • 在极坐标下,式(8)可写成

  • rn+1=|λ(ε)|rn+a(ε)rn3+O(4)θn+1=θn+argλ(ε)+b(ε)rn3+O(4)
    (9)
  • 其中

  • a (ε) =Rec (ε) a (ε) , b (ε) =Imc (ε) a (ε) .

  • 对(9)式的第一个方程的系数在ε=0处进行Taylor展开,得

  • rn+1=(1+dε)rn+a(0)rn3+O(4)
    (10)
  • 下面计算立方项的系数a(0),判定其正负.记(7)式的非线性项为

  • Fuv=-ρμv2-ρμu2
    (11)
  • 则(7)式可简记为

  • un+1vn+1=Aunvn+Funvn
    (12)
  • 其中A=1-ρρμ1-2y*ρμ1-2x*1-ρ.

  • 定义矩阵Φ=qq-,作变换

  • uv=Φzz=Φ11z+z-
    (13)
  • 其中

  • Φ11=-izμ2-2μ-4+iz-μ2-2μ-41+ (μ+1) (μ-3) .

  • 把(13)式代入(11)式,当z=0时,也有

  • FΦzz=-ρμz2+2zz-+z-2F21

  • FΦzz-=-ρμz2+2zz-+z-2F21
    (14)
  • 其中

  • F21=ρμμ2-2μ-4z2-2zz-+z-2[1+ (μ+1) (μ-3) ]2

  • 因此

  • f20=2z2FΦzz-z=0=-4μ-3-2μ+μ2f201
    (15)
  • 其中

  • f201=4μ-4-2μ+μ2 (-3+μ) (1+μ) 1+ (-3+μ) (1+μ) ) 2

  • f11=2zz-FΦzz-z=0=-4μf112
    (16)
  • 其中

  • f112=-4μ-4-2μ+μ2 (-3+μ) (1+μ) 1+ (-3+μ) (1+μ) ) 2

  • f21=3z2z-FΦzz+K20z22+K11zz-+K02z-22z=0

  • 现可计算

  • K20=λ2I-A-1f20K11=(I-A)-1f11K02=λ-2I-A-1f02
    (17)
  • f21=3z2z-FΦzz-+K20z22+K11zz-+K02z-22z=0
    (18)
  • 由于f21/2是(15)式

  • FΦzz-+K20z22+K11zz-+K02z-22

  • 在(zz-)=(0,0)处展开式z2z-的系数,因此实际计算过程中,取

  • f21=3z2z-FΦzz-+K20z22+K11zz-z=0
    (19)
  • μ=5,ρ=16代入(7)式、(8)式及(11)~(19)式,得

  • f21=25 (-239-4453+ (1511-2533) i) 144 (13+43) 25 (495+3853- (20311+43933) i) 144 (37+303)

  • 因此有

  • c (0) =121pqpf21=12×12pf21=125 (90+373) (55-8911i) 792 (217+1043)

  • a(0)=Rec(0)λ=-500(90+373)5859+28083-7.1851<0
    (20)
  • 因此,由引理2及(20)式,结合文献[1922]的定理,Kopel系统(1)在不动点P3处发生N-S分岔.对充分小的扰动ε1>0,存在稳定的不变曲线,且不动点P3是渐近稳定的.

  • 基于以上分析及文献[1922]的结论,得N-S分岔的不变曲线的近似表达式为

  • xn*yn*μ+1+(μ+1)(μ-3)2μμ+1-(μ+1)(μ-3)2μ+2r0Reqeiθ+r02ReK20e2iθ+K11
    (21)
  • 当取参数μ=5,ρ=1/6时,计算可得

  • r0=-dεα (0) =ε7.1851, q=-111+23i1,

  • K20=5 (171+233+ (4511+3533) i) 48 (13+43) 5 (-177-353+ (2533-1511) i) 48 (13+43) ,

  • K11=5+653-39-12365+75339+123θ为旋转角度,存在一个适当小的正数ε,从而得到N-S分岔的不变曲线的具体近似表达式(6).证毕.

  • 注:闭不变曲线的近似表达式(6)中的ε是一个适当小的正数,它不一定等于扰动参数ε1.

  • 2 数值模拟

  • 现对N-S分岔进行数值模拟,当取μ=5,ε1=0.001,则扰动后ρ=1/6+ε1,(6)式中的ε=ε1=0.001,初始值取ε=ε1=0.001,初始值的选取不能远离不动点P3,迭代次数2000次,去掉部分暂态数据,得N-S分岔图及近似不变曲线,如图1所示,其中心的星号表示P3不动点. 近似不变曲线为闭虚线,有很好的近似效果.

  • 图1 ε=ε1=0.001的情形

  • Fig.1 The case of ε=ε1=0.001

  • 当取μ=5,ε1=0.0001,则扰动后ρ=1/6+ε1,(6)式中的ε=ε1=0.0001时,初始值取(0.3,0.2),得到数值模拟结果如图2所示,此时ε=0.0001所得的近似不变曲线已经不能近似N-S分岔的结果.而若选取ε1=0.001≠ε时,才能得到图1类似的近似效果.

  • 图2 ε=ε1=0.0001的情形

  • Fig.2 The case of ε=ε1=0.0001

  • 图1与图2两种情形也说明了当系统的参数发生小扰动ε1时,会发生N-S分岔,则存在某个ε,可构造N-S分岔所产生的不变曲线近似方程(6),但此处的ε不一定是与小扰动参数ε1取同一个值.

  • 现结合文献[22]的定理4.4及其第916页的数值模拟例子印证以上观点.文献[22]中所研究的系统为

  • xn+1=αxn1-xn-xnynyn+1=1βxnyn
    (22)
  • 其不动点P3βα(1-β)-1).当β=121-1α时,系统(22)将发生N-S分岔,分岔所产生的近似不变曲线的近似表达式为

  • xn*yn*βα(1-β)-1+2ρ0Reqeiθ+ρ02ReK20e2iθ+K11
    (23)
  • 其中ρ0=μα02qK20K11等取值情况见文献[22]的定理4.4.

  • α=2.5+μ,即α0=2.5,扰动参数μ=0.1,β=0.3,取初始值(0.6,0.6). 类似前面的处理技巧,把(23)式的参数ρ0=μ/α02中的μ重新记成μ1,以示区分. 当μ=μ1=0.1时,即为文献[22]的定理4.4的数值模拟的例子,所得结果如图3所示,(23)式能很好地近似N-S分岔所产生的不变曲线.

  • 图3 μ=μ1=0.1的情形

  • Fig.3 The case of μ=μ1=0.1

  • μ=μ1=0.001时,其他参数不变,去掉部分暂态数据,此时所得近似效果已较差.而此时若选择某个恰当的μ1=0.0019,则可取得较好的近似效果.

  • 通过以上算例,文献[19]的推论2.1与文献[22]的定理4.4中,不变曲线的近似表达式方程为

  • xn*x*+2ρ0Reqeiθ+ρ02ReK20e2iθ+K11
    (24)
  • 如果在N-S分岔中,对系统的参数扰动是μ,那么近似表达方程式(24)中ρ0=-d/aμ处的μ不一定取参数扰动μ相等的值,而只是存在某个μ1,使得当ρ0=-d/aμ1时,有较好的近似效果,否则limμ0 ρ0=limμ0 -d/aμ1=0,其中ad是与μ无关的固定值.因此,由(24)式,当扰动参数μ趋于0时,近似表达式会缩小至不动点x*,而不是N-S分岔所产生的不变曲线的近似,只有找到恰当的μ1才能实现较好的近似.

  • 3 结论

  • 首先阐述了Kopel系统的分岔、混沌与稳定性等方面已有的研究成果.在分岔方面,由于推导计算的复杂性,对N-S分岔的方向与稳定性的一般性证明仍是公开的问题.对N-S分岔所产生的不变曲线的研究也没有涉及.因此,本文采用Murakami K提出的新方法,分析了Kopel系统的N-S分岔,给出了部分一般性证明,即引理2与引理3,再分析了一组特殊参数(ρ=1/6,μ=5)情形下 Kopel系统的N-S分岔.同时,给出了N-S分岔所产生的不变曲线的近似表达式,讨论了扰动参数ε1与近似表达式(6)中ε的选取问题.这些研究是对Kopel系统的复杂动力学的一个完善.但对其N-S分岔的一般性分析,即ρ=2/(μ2-2μ-3)与μ>1+6时,要克服(17)式、(19)式与(20)式的推导计算的困难,仍是将来需要解决的公开问题.Kopel系统的高余维分岔也是可研究问题,这些分岔与混沌的研究有助于理解Kopel系统的内在复杂动力学与经济现象.

  • 参考文献

    • [1] KOPEL M.Simple and complex adjustment dynamics in Cournot duopoly models [J].Chaos,Solitons & Fractals,1996,7(12):2031-2048.

    • [2] AGIZA H N.On the analysis of stability,bifurcation,chaos and chaos control of Kopel map [J].Chaos,Solitons & Fractals,1999,10(11):1909-1916.

    • [3] ANDERSON D R,MYRAN N G,WHITE D L.Basins of attraction in a Cournot duopoly model of Kopel [J].Journal of Difference Equations and Applications,2005,11(10):879-887.

    • [4] 于晋臣.非线性动力系统的分岔研究 [D].北京:北京交通大学,2006.YU J C.Study on bifurcation of nonlinear dynamical system [D].Beijing:Beijing Jiaotong University,2006.(in Chinese)

    • [5] GOVAERTS W,GHAZIANI R K.Stable cycles in a cournot duopoly model of Kopel [J].Journal of Computational and Applied Mathematics,2008,218(2):247-258.

    • [6] 于晋臣,张彩艳.Kopel 系统的分岔研究 [J].山东交通学院学报,2009,17(2):77-81.YU J C,ZHANG C Y.Study of bifurcation in Kopel system [J].Journal of Shandong Jiaotong University,2009,17(2):77-81.(in Chinese)

    • [7] 于晋臣,张彩艳,彭名书.一类离散动力系统的混沌研究 [J].昆明理工大学学报,2009,34(4):101-104.YU J C,ZHANG C Y,PENG M S.Chaotic study of a discrete dynamical system [J].Journal of Kunming University of Science and Technology,2009,34(4):101-104.(in Chinese)

    • [8] WU W,CHEN Z,LP W H.Complex nonlinear dynamics and controlling chaos in a Cournot duopoly economic model [J].Nonlinear Analysis:Real World Applications,2010,11(5):4363-4377.

    • [9] 吴文娟.复杂混沌系统的存在性及动力学特性分析[D].天津:南开大学,2010.WU W J.Existence and dynamic characteristics of complex chaotic systems [D].Tianjin:Nankai University,2010.(in Chinese)

    • [10] 李波,何启志.Kopel寡头博弈模型的演化分析 [J].经济数学,2020,37(3):9-15.LI B,HE Q Z.Dynamic analysis of Kopel duopoly model [J].Journal of Quantitative Economics,2020,37(3):9-15.(in Chinese)

    • [11] GAO Y,LIU B,FENG W.Bifurcations and chaos in a nonlinear discrete time cournot duopoly game [J].Acta Mathematicae Applicatae Sinica,2014,30(4):951-964.

    • [12] BISCHI G I,KOPEL M.Equilibrium selection in a nonlinear duopoly game with adaptive expectations [J].Journal of Economic Behavior & Organization,2001,46(1):73-100.

    • [13] GAO X,ZHONG W,MEI S.Equilibrium stability of a nonlinear heterogeneous duopoly game with extrapolative foresight [J].Mathematics and Computers in Simulation,2012,82(11):2069-2078.

    • [14] ZHANG Y,GAO X.Equilibrium selection of a homogenous duopoly with extrapolative foresight [J].Communications in Nonlinear Science and Numerical Simulation,2019,67:366-374.

    • [15] LI B,HE Q,CHEN R.Neimark–Sacker bifurcation and the generate cases of Kopel oligopoly model with different adjustment speed [J].Advances in Difference Equations,2020,2020(1):1-18.

    • [16] CÁNOVAS J S,MUNOZ-GUILLERMO M.On the dynamics of Kopel’s cournot duopoly model [J].Applied Mathematics and Computation,2018,330:292-306.

    • [17] 姜小霞.一类经济模型的分岔分析[D].北京:北京交通大学,2008.JIANG X X.The analysis of bifurcation of an economic model[D].Beijing:Beijing Jiaotong University,2008.(in Chinese)

    • [18] 辛宝贵,马军海.一个不完全信息古诺博弈动力学模型的构建 [J].统计与决策,2009,(8):32-33.XIN B G,MA J H.Construction of a dynamic model of cournot game with incomplete information [J].Statistics & Decision,2009,(8):32-33.(in Chinese)

    • [19] MURAKAMI K.The invariant curve caused by Neimark-Sacker bifurcation [J].Dynamics of Continuous Discrete and Impulsive Systems Series A,2002,9:121-132.

    • [20] YUAN L G,YANG Q G.Bifurcation,invariant curve and hybrid control in a discrete-time predator-prey system [J].Applied Mathematical Modelling,2015,39(8):2345-2362.

    • [21] KHYAT T,KULENOVIC M R S,PILAV E.The invariant curve caused by Neimark-Sacker bifurcation of a perturbed Beverton-Holt difference equation [J].International Journal of Difference Equations,2017,12(2):267-280.

    • [22] MURAKAMI K.Stability and bifurcation in a discrete-time predator-prey model [J].Journal of Difference Equations and Applications,2007,13(10):911-925.

    • [23] KUZNETSOV Y A.Elements of applied bifurcation theory [M].New York:Springer-Verlag,2004.

    • [24] GUCKENHEIMER J,HOLMES P.Nonlinear oscillations,dynamical systems and bifurcations of vector fields [M].New York:Springer-Verlag,1983:453.

    • [25] 杜文举,张建刚,俞建宁,等.三维离散类Lorenz系统的Neimark-Sacker分岔 [J].四川大学学报,2015,52(6):1297-1302.DU W J,ZHANG J G,YU J N,et al.An analysis of Neimark-Sacker bifurcation for a new three-dimensional discrete Lorenz-like system [J].Journal of Sichuan University,2015,52(6):1297-1302.(in Chinese)

    • [26] 陈志强,王进良,李由.二维离散Duffing-Holmes 系统的分支与混沌研究 [J].动力学与控制学报,2017,15(4):324-329.CHEN Z Q,WANG J L,LI Y.Analysis on bifurcation and chaos of two-dimensional discrete Duffing-Holmes system [J].Journal of Dynamics and Control,2017,15(4):324-329.(in Chinese)

    • [27] 陈苏,袁少良,周慧.二维离散抛物映射的分支 [J].动力学与控制学报,2019,17(2):97-103.CHEN S,YUAN S L,ZHOU H.Bifurcation of a 2-D discrete parabolic map [J].Journal of Dynamics and Control,2019,17(2):97-103.(in Chinese)

  • 参考文献

    • [1] KOPEL M.Simple and complex adjustment dynamics in Cournot duopoly models [J].Chaos,Solitons & Fractals,1996,7(12):2031-2048.

    • [2] AGIZA H N.On the analysis of stability,bifurcation,chaos and chaos control of Kopel map [J].Chaos,Solitons & Fractals,1999,10(11):1909-1916.

    • [3] ANDERSON D R,MYRAN N G,WHITE D L.Basins of attraction in a Cournot duopoly model of Kopel [J].Journal of Difference Equations and Applications,2005,11(10):879-887.

    • [4] 于晋臣.非线性动力系统的分岔研究 [D].北京:北京交通大学,2006.YU J C.Study on bifurcation of nonlinear dynamical system [D].Beijing:Beijing Jiaotong University,2006.(in Chinese)

    • [5] GOVAERTS W,GHAZIANI R K.Stable cycles in a cournot duopoly model of Kopel [J].Journal of Computational and Applied Mathematics,2008,218(2):247-258.

    • [6] 于晋臣,张彩艳.Kopel 系统的分岔研究 [J].山东交通学院学报,2009,17(2):77-81.YU J C,ZHANG C Y.Study of bifurcation in Kopel system [J].Journal of Shandong Jiaotong University,2009,17(2):77-81.(in Chinese)

    • [7] 于晋臣,张彩艳,彭名书.一类离散动力系统的混沌研究 [J].昆明理工大学学报,2009,34(4):101-104.YU J C,ZHANG C Y,PENG M S.Chaotic study of a discrete dynamical system [J].Journal of Kunming University of Science and Technology,2009,34(4):101-104.(in Chinese)

    • [8] WU W,CHEN Z,LP W H.Complex nonlinear dynamics and controlling chaos in a Cournot duopoly economic model [J].Nonlinear Analysis:Real World Applications,2010,11(5):4363-4377.

    • [9] 吴文娟.复杂混沌系统的存在性及动力学特性分析[D].天津:南开大学,2010.WU W J.Existence and dynamic characteristics of complex chaotic systems [D].Tianjin:Nankai University,2010.(in Chinese)

    • [10] 李波,何启志.Kopel寡头博弈模型的演化分析 [J].经济数学,2020,37(3):9-15.LI B,HE Q Z.Dynamic analysis of Kopel duopoly model [J].Journal of Quantitative Economics,2020,37(3):9-15.(in Chinese)

    • [11] GAO Y,LIU B,FENG W.Bifurcations and chaos in a nonlinear discrete time cournot duopoly game [J].Acta Mathematicae Applicatae Sinica,2014,30(4):951-964.

    • [12] BISCHI G I,KOPEL M.Equilibrium selection in a nonlinear duopoly game with adaptive expectations [J].Journal of Economic Behavior & Organization,2001,46(1):73-100.

    • [13] GAO X,ZHONG W,MEI S.Equilibrium stability of a nonlinear heterogeneous duopoly game with extrapolative foresight [J].Mathematics and Computers in Simulation,2012,82(11):2069-2078.

    • [14] ZHANG Y,GAO X.Equilibrium selection of a homogenous duopoly with extrapolative foresight [J].Communications in Nonlinear Science and Numerical Simulation,2019,67:366-374.

    • [15] LI B,HE Q,CHEN R.Neimark–Sacker bifurcation and the generate cases of Kopel oligopoly model with different adjustment speed [J].Advances in Difference Equations,2020,2020(1):1-18.

    • [16] CÁNOVAS J S,MUNOZ-GUILLERMO M.On the dynamics of Kopel’s cournot duopoly model [J].Applied Mathematics and Computation,2018,330:292-306.

    • [17] 姜小霞.一类经济模型的分岔分析[D].北京:北京交通大学,2008.JIANG X X.The analysis of bifurcation of an economic model[D].Beijing:Beijing Jiaotong University,2008.(in Chinese)

    • [18] 辛宝贵,马军海.一个不完全信息古诺博弈动力学模型的构建 [J].统计与决策,2009,(8):32-33.XIN B G,MA J H.Construction of a dynamic model of cournot game with incomplete information [J].Statistics & Decision,2009,(8):32-33.(in Chinese)

    • [19] MURAKAMI K.The invariant curve caused by Neimark-Sacker bifurcation [J].Dynamics of Continuous Discrete and Impulsive Systems Series A,2002,9:121-132.

    • [20] YUAN L G,YANG Q G.Bifurcation,invariant curve and hybrid control in a discrete-time predator-prey system [J].Applied Mathematical Modelling,2015,39(8):2345-2362.

    • [21] KHYAT T,KULENOVIC M R S,PILAV E.The invariant curve caused by Neimark-Sacker bifurcation of a perturbed Beverton-Holt difference equation [J].International Journal of Difference Equations,2017,12(2):267-280.

    • [22] MURAKAMI K.Stability and bifurcation in a discrete-time predator-prey model [J].Journal of Difference Equations and Applications,2007,13(10):911-925.

    • [23] KUZNETSOV Y A.Elements of applied bifurcation theory [M].New York:Springer-Verlag,2004.

    • [24] GUCKENHEIMER J,HOLMES P.Nonlinear oscillations,dynamical systems and bifurcations of vector fields [M].New York:Springer-Verlag,1983:453.

    • [25] 杜文举,张建刚,俞建宁,等.三维离散类Lorenz系统的Neimark-Sacker分岔 [J].四川大学学报,2015,52(6):1297-1302.DU W J,ZHANG J G,YU J N,et al.An analysis of Neimark-Sacker bifurcation for a new three-dimensional discrete Lorenz-like system [J].Journal of Sichuan University,2015,52(6):1297-1302.(in Chinese)

    • [26] 陈志强,王进良,李由.二维离散Duffing-Holmes 系统的分支与混沌研究 [J].动力学与控制学报,2017,15(4):324-329.CHEN Z Q,WANG J L,LI Y.Analysis on bifurcation and chaos of two-dimensional discrete Duffing-Holmes system [J].Journal of Dynamics and Control,2017,15(4):324-329.(in Chinese)

    • [27] 陈苏,袁少良,周慧.二维离散抛物映射的分支 [J].动力学与控制学报,2019,17(2):97-103.CHEN S,YUAN S L,ZHOU H.Bifurcation of a 2-D discrete parabolic map [J].Journal of Dynamics and Control,2019,17(2):97-103.(in Chinese)

  • 微信公众号二维码

    手机版网站二维码