en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

段利霞,E-mail:duanlx@ncut.edu.cn

中图分类号:O19

文献标识码:A

文章编号:1672-6553-2023-21(1)-060-012

DOI:10.6052/1672-6553-2021-068

参考文献 1
ARDAKANI M,YANG J,SUN L.Stimulus response driving behavior:An improved general motor vehicle-following model [J].Advanced in Transportation Studies,2016,39(16):23-36.
参考文献 2
SUN L,PAN Y,GU W.Data mining using regularized adaptive B-splines regression with penalization for multi-regime traffic flow models [J].Journal of advanced Transportation,2014,48(014):876-890.
参考文献 3
WU X C,SONG T,ZHANG P.Phase-plane analysis of a conserved higher-order traffic flow model [J].Applied Mathematics and Mechanics,2012,33(12):1403-1410.
参考文献 4
SUN L,YANG J,MAHMASSANI H,et al.Data mining-based adaptive regression for developing equilibrium speed-density relationships [J].Canadian Journal of Civil Engineering,2010,37(3):389-400.
参考文献 5
XONG W,SUN L,ZHOU J.Spline-based multi-regime traffic stream models [J].Journal of Southeast University,2010,26(26):122-125.
参考文献 6
SUN L,ZHOU J.Development of multi-regime speed-density relationships by cluster analysis [J].Journal of Transportation Research Board,2005,1934(1):64-71.
参考文献 7
HELBING D.Derivation and empirical validation of a refined traffic flow model [J].Physica A,1996,233(1-2):253-282.
参考文献 8
BANDO M,HASEBE K,NAKAYAMA A,et al.Dynamical model of traffic congestion and numerical simulation [J].Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics,1995,51(2):1035-1042.
参考文献 9
HELBING D,TILCH B.Generalized force model of traffic dynamics [J].Physical Review E,1998,58(1998):133-138.
参考文献 10
JIANG R,WU Q,ZHU Z.Full velocity difference model for a car-following theory [J].Physical Review E,2001,64(1-2):017101-017111.
参考文献 11
DAVIS L C.Modifications of the optimal velocity traffic model to include delay due to driver reaction time [J].Physica A,2003,319(2):557-567.
参考文献 12
GE H X,CHENG R J,LI Z P.Two velocity difference model for a car following theory [J].Physica A:Statistical Mechanics and its Applications,2012,387(21):5239-5245.
参考文献 13
ZHENG L J,TIAN C,SUN D H,et al.A new car-following model with consideration of anticipation driving behavior [J].Nonlinear Dynamics,2012,70(2):1205-1211.
参考文献 14
ZHANG X,JARRETT D F.Stability analysis of the classical car-following model [J].Transportation Research Part B Methodological,1997,31(6):441-462.
参考文献 15
TANG T Q,JING L I,WANG Y P,et al.Vehicle's fuel consumption of car-following models [J].Science China Technological Sciences,2013,56(5):1307-1312.
参考文献 16
RICHARDS P I.Shockwaves on the highway [J].Operations Research,1956,4(1):42-51.
参考文献 17
WU C X.Phase-plane analysis to an “anisotropic” higher-order traffic flow model [J].International Journal of Modern Physics B,2018,32(9):1-13.
参考文献 18
HE H D,LU W Z,XUE Y.Prediction of PM10 concentrations at urban traffic intersections using semi-empirical box modelling with instantaneous velocity and acceleration [J].Atmospheric Environment,2009,43(40):6336-6342.
参考文献 19
KAMARIANAKIS Y,GAO H O.Evaluating effects of engine operating variables on particle number emission rates using robust regression models [J].Transportation Research Record Journal of the Transportation Research Board,2011,2233(1):36-44.
参考文献 20
ZEGEYE S K,SCHUTTER B D,HELLENDOORN J,et al.Integrated macroscopic traffic flow,emission,and fuel consumption model for control purposes [J].Transportation research,2013,31(7):158-171.
参考文献 21
JIANG Y Q,MA P J,ZHOU S G.Macroscopic modeling approach to estimate traffic-related emissions in urban areas [J].Transportation Research Part D,2018,60(2018):41-55.
参考文献 22
JIANG R,WU Q S,ZHU Z J.A new continuum model for traffic flow and numerical tests [J].Transportation Research Part B,2002,36(5):405-419.
参考文献 23
AHN K,RAKHA H,TRANI A,et al.Estimating vehicle fuel consumption and emissions based on instantaneous speed and acceleration levels [J].Journal of Transportation Engineering,2002,128(2):182-190.
参考文献 24
WANG T,CHENG R J,GE H X.Analysis of a novel two-lane lattice hydrodynamic model considering the empirical lane changing rate and the self-stabilization effect [J].IEEE Access,2019,7(99):174725-174733.
参考文献 25
CHENG R J,GE H X,WANG J F.An extended continuum model accounting for the driver's timid and aggressive attributions [J].Physics Letters A,2017,381(15):1302-1312.
参考文献 26
杜勇,化存才,郑治波.一种岔路口分流交通流格子模型的孤立波分析 [J].动力学与控制学报,2013,11(2):133-136.DU Y,HUA C C,ZHENG Z B,et al.Analysis of soliton in a split-flow traffic flow lattice model on the crossing road [J].Journal of Dynamics and Control,2013,11(2):133-136.(in Chinese)
参考文献 27
CAO B G.A new car-following model considering driver’s sensory memory [J].Physica A:Statistical Mechanics and Its Applications,2015,427(2015):218-225.
参考文献 28
郑伟范,邓绯,江宝山.几种随机相互作用势相关的交通流模型比较 [J].动力学与控制学报,2017,15(1):80-86.ZHENG W F,DENG F,JIANG B S.Comparison of several interactional potential related traffic flow models [J].Journal of Dynamics and Control,2017,15(1):80-86.(in Chinese)
参考文献 29
TANG T Q,HUANG H J,SHANG H Y.An extended macro traffic flow accounting for the driver’s bounded rationality and numerical tests [J].Physica A:Statistical Mechanics and Its Applications,2017,468(2017):322-333.
参考文献 30
LI T.Nonlinear dynamics of traffic jams [J].Physica D:Nonlinear Phenomena,2005,207(1-2):41-51.
参考文献 31
杜勇,武佳,尹吉庆.考虑司机反应延迟和次近邻车辆影响的格子模型 [J].动力学与控制学报,2015,13(1):72-76.DU Y,WU J,YIN J Q.A lattice model considering driver response delay and the influence of next-neighbor vehicles [J].Journal of Dynamics and Control,2015,13(1):72-76.(in Chinese)
参考文献 32
KERNER B S,KONHAUSER P.Cluster effect in initially homogeneous traffic flow [J].Physical Review E,1993,48(4):2335-2338.
参考文献 33
DELGADO J,SAAVEDRA P.Global bifurcation diagram for the Kerner-Konhauser traffic flow model [J].International Journal of Bifurcation and Chaos,2015,25(5):1-31.
参考文献 34
艾文欢.交通流非线性现象分支分析方法研究[D].西安:西北工业大学,2016.AI W H.Research on the branch analysis method of traffic flow nonlinear phenomena.[D].Xian:Northwestern Polytechnical University,2016.(in Chinese)
参考文献 35
REN W L,CHENG R J,GE H X.Bifurcation control in an optimal velocity model via double time-delay feedback method [J].IEEE Access,2020,8(2020):216162-216175.
参考文献 36
REN W L,CHENG R J,GE H X.Bifurcation analysis of a heterogeneous continuum traffic flow model [J].Applied Mathematical Modelling,2021,94(2021):369-387.
参考文献 37
ZHAI Q T,GE H X,CHENG R J.An extended continuum model considering optimal velocity change with memory and numerical tests [J].Physica A:Statistical Mechanics and its Applications,2018,490(2018):774-785.
目录contents

    摘要

    交通流模型的分岔现象,涉及复杂的动力学特征且研究较少.因此,提出了一个最优速度模型来研究驾驶员记忆对驾驶行为和燃料消耗的影响.利用非线性动力学,分析和预测了复杂的交通现象.运用双参数分岔、单参数分岔等分析方法,得到了BT分岔、尖分岔(CP)、鞍结分岔(LP)、Hopf分岔(H) 等不同分岔结构.选择Hopf分岔和鞍结分岔作为密度演化的起点,描述了均匀流、稳定和不稳定的拥挤流以及走走停停等动力学现象.数值模拟了能源消耗在分岔点附近的变化特征.结果表明,当考虑分岔的影响时,既能发现燃料消耗规律,又能为合理控制能耗提供一定的理论依据.

    Abstract

    The bifurcation phenomenon of traffic flow model involves complex dynamic characteristics and is rarely studied.Therefore, an optimal velocity model is proposed to study the effects of driver’s memory on driving behavior and fuel consumption.The complex traffic phenomenon is analyzed and predicted by nonlinear dynamics.We obtain Hopf (H) bifurcation, saddle-node (LP) bifurcation, cusp (CP) bifurcation and Bogdanov-Taken (BT) bifurcation by using two-parameter bifurcation and single-parameter bifurcation methods.Hopf bifurcation and saddle-node bifurcation are selected as the starting point of density evolution to describe the dynamic phenomena of uniform flow, stable and unstable crowded flow and stop-and-go.The variation characteristics of energy consumption near bifurcation are simulated numerically.The results show that characteristic of fuel consumption can be found by considering the influence of bifurcation, which can also provide some theoretical guidelines for a rational control of energy consumption.

    关键词

    交通流最优速度分岔能源消耗控制

  • 引言

  • 交通流表现出复杂的非线性现象,如冲击波、走停波和相变.60多年来,交通流理论一直是研究的核心领域[1-7].Bando等[8]对Newell模型进行了改进,提出了最优速度模型.为了克服最优速度模型中不切实际的高加速度,Helbing等[9]通过在最优速度模型中添加速度差,提出了广义力模型.Jiang等[10]同时考虑了负速度差和正速度差来处理不合理的高加速度,并将其命名为全速差模型.Davis[11]发现并解决了全速差模型对延迟时间敏感度不高这一问题.Ge等[12]考虑两种速度差模型,解决了反应时间较长问题并描述了拥堵、不稳定和走停波现象,但未能描述驾驶员记忆对交通流的影响.通过观察驾驶员在真实交通中的行为,Zheng等[13]提出了一个基于动态估计信息的预期推导(AD)汽车跟踪模型.Herman等[14]发现驱动程序在运行过程中仍然是过去的记忆,换句话说,驾驶员通常会根据之前时间的交通状况(t-τ)和当前时间t的交通状况做出决定.Tang等[1516]考虑过去的交通状况(即驾驶员记忆、驾驶员行为因素),改进了最优速度模型,发现驾驶员记忆确实会影响驾驶员的行为,从而根据之前一段时间的交通状况做出决策.因此,驾驶记忆对驾驶员起着反馈的作用.

  • 除了交通流模型外,研究人员提出了许多模型来研究交通燃料消耗和排放,但这些模型不能直接用于探索宏观交通流模型中的燃料消耗和排放[17-19].为了克服这一限制,研究人员提出了两个宏观模型来探索燃料消耗和排放,但这两个模型的控制方程只包括平均速度,不包括加速度,因此加速度对燃料消耗和排放的影响不能从宏观角度完全再现 [2021].Jiang等[2223]指出,交通流的微观变量可以转化为宏观变量,使用相同的方法将微观能量消耗模型转换为一个宏观模型.

  • 现有的交通流理论及其求解方法存在一定的缺陷.例如,当前建模研究大多集中在均匀交通流上,分析范围仅限于平衡状态的小范围扰动,缺乏对交通流的全局分析[24-26].Kuhne等[27]将混沌动力学理论应用到Payne模型中,改变瓶颈处的密度和通行能力两个控制参数产生亚临界或超临界分岔.一些学者总结了国内外分岔理论的发展[2829].Li[30]推导出Payne模型的离散形式,研究了该模型的倍周期分岔现象,发现分岔点的出现会导致交通流模式从自由流改为同步流,混沌现象会导致交通拥堵.Zhou等[31]通过跟驰模型分析了交通流中存在的倍周期分岔和混沌现象.Kerner等[32]通过非线性时滞跟驰模型,描述了跟驰模型中复杂的非线性现象.Delgado等[33]从理论角度证明了宏观交通流模型分岔的存在性,但分岔引起的具体交通现象不足.Ai[34]推导了速度梯度模型中Hopf分岔和鞍结分岔的存在条件,根据Hopf分岔理论解释了交通流的启停现象.Ren等[35-37]都做了Hopf分岔研究,并通过行波参数找到Hopf分岔范围,解释了走走停停现象.

  • 本文的结构如下:首先,介绍了最优速度交通流模型,做了宏观转化,并介绍了模型平衡点的类型,提出了宏观能源消耗模型.其次,通过单参数分岔和双参数分岔之间的关系,描述了双参数分岔下的单参数的分岔结构.再次,分析了系统的动力学特性,并运用单参数分岔分析和能源消耗的数值模拟,探究了行波参数q*以及行波速度c对能源消耗的影响,并给出了能源消耗的动力学机制.最后,给出本文的结论.

  • 1 模型改进

  • 1.1 交通流模型

  • 本文分析了考虑最优速度随记忆变化的跟驰模型[16],模型描述如下:

  • v˙n(t)=aVxn(t)-vn(t)+λvn(t)+γVxn(t)-Vxn(t-δ)
    (1)
  • 其中,xnt是第n辆车在t时刻的位置,vn=vn+1-vn描述了两辆相邻车辆的速度差,xn=xn+1-xn描述了相邻车辆的间距,Vxnt描述最优速度.Vxnt-Vxnt-δ是驾驶员将当前最优速度调整到记忆为t-δ时的最佳速度,其中,δ表示记忆步长.a是敏感系数,λ为速度差响应系数,γ是驾驶员最优速度差的灵敏系数.当γ=0和δ=0,系统(1)为全速差(FVDM)模型.

  • 通过简单的Talayer展开,最优速度的表达式如下:

  • Vxn(t-δ)=Vxn(t)-δvn(t)=Vxn(t)-V'xn(t)δvn(t)
    (2)
  • 把(2)式代入(1)式,得出以下表达式:

  • v˙n(t)=aVxn-vn(t)+λ+γδV'xnvn(t)
    (3)
  • 微观变量与宏观变量的转化关系如下所示:

  • vn(t)v(x,t),vn+1(t)v(x+Δ,t)Vxn(t)Ve(ρ),V'xn(t)V-'(h)
    (4)
  • 其中表示相邻车辆之间的距离,ρxt)和vxt)分别表示宏观密度和速度.密度与位置的关系为ρxt=1/xt. Veρ为平衡速度,满足为V-'=-ρ2Ve'ρ.平衡速度Veρ选择如下形式[34]:

  • Ve (ρ) =vf1+expρ/ρm-0.250.06-1-3.72×10-6

  • vx+Δt进行Taylor级数展开且忽略高阶项,可以推导为:

  • vn(t)=v(x+Δ,t)-v(x,t)=v'(x,t)+12v''(x,t)2
    (5)
  • 将(4)式和(5)式代入(3)式,最优速度模型可以写成如下形式:

  • vt+vvx=aVe(ρ)-v+λ+γδV'xn×v'(x,t)+12v''(x,t)2
    (6)
  • 在不考虑出入匝道时,流量守恒方程(LWR模型)为[30]:

  • 0=xebe+7ede
    (7)
  • 将流量守恒方程(7)与动力学方程(6)结合,有最优速度随记忆变化的宏观交通流模型,如下所示:

  • ρt+qx=0,vt+v-λ-γδρ2Ve'(ρ)vx=aVe(ρ)-v+λ-γδρ2Ve'(ρ)2Δ2v''(x)
    (8)
  • 1.2 交通流的行波解

  • 为了研究系统的稳定性,引入了行波解z=x-ct,把该解代入(8)式,可以推导出:

  • -cρz+qz=0
    (9)
  • -cvz+v-λ-γδρ2V'(ρ)Δvz=aVe(ρ)-v+λ-γδρ2Ve'(ρ)22vzz
    (10)
  • q=ρv是交通流速度与密度的乘积.根据(9)式,推导出vz的关系如下:

  • vz=cρzρ-qρzρ2
    (11)
  • 对(11)式等号两边分别求导,如下所示:

  • vzz=cρzzρ-2cρz2ρ2-qρzzρ2+2qρz2ρ3
    (12)
  • 对(9)式积分,如下所示:

  • -cρ+q=q*=const
    (13)
  • 将(11)式,(12)式代入(13)式,如下所示:

  • -ρzρ3q2+2cρz+c(ρ)ρzρ2+aρ+μ(ρ)ρzzρ2-2μ(ρ)ρz2ρ2q=aVe(ρ)+cμ(ρ)ρzzρ-2cμ(ρ)ρz2ρ2+c2+c(ρ)cρρz
    (14)
  • 为了简化(14)式,引入参数μρt=12λ-γδρ2Ve'ρ2cρt=λ-γδρ2Ve'ρ,将(13)式代入(14)式,如下所示:

  • ρzz-2ρρz2+c(ρ)μ(ρ)-q*μ(ρ)ρρz-aρμ(ρ)q*ρVe(ρ)-q*-cρ=0
    (15)
  • 通过降阶,令y~=dρ/dz,(15)式可以写为:

  • dρdz=y~dy~dz=2ρy~2--q*ρμ(ρ)+c(ρ)μ(ρ)y~+aρq*μ(ρ)ρVe(ρ)-q*-cρ
    (16)
  • 为了满足当交通拥挤和车辆密度饱和时,自变量将趋于无穷这一条件,引入变量替换η=1ρm-ρ. 令y=dηdz,(16)式的转换关系如下:

  • dηdz=ydydz=2y2η-2y21-ρmηη-q*η1-ρmημ(η)+c(η)μ(η)y+Fη,c,q*
    (17)
  • 其中Fηcq*=a1-ρmηq*μη1-ρmηVeη-c+q*η.在(17)式中,ηρ具有相同的单调性.密度ρ越接近拥挤密度ρm,则变量η趋于无穷,且yη的变化率.因此,可以用η的轨迹清晰地描述交通拥堵与系统不稳定性之间的关系,从而可将交通流问题转化为系统的稳定性问题.

  • 1.3 模型的平衡点

  • 令方程(17)右端项为零,有y=0和Fηcq*)=0成立.由此可得平衡点(ηi,0),在平衡点处对(17)式Taylor展开,可以得到以下等式:

  • dηdz=ydydz=-q*ηi1-ρmηiμηi+cηiμηiy+Fi'iηi,c,q*η-ηi
    (18)
  • Mi=-q*ηi1-ρmηiμηi+cηiμηi,则(18)式的Jacobian特征方程为:

  • λ2-Miλ-Fi'=0
    (19)
  • 其中,Fi'=Fi'ηicq*.根据微分方程理论,(18)式的平衡点类型判断如下:

  • (a)当Fi'>0时,平衡点为鞍点;(b)当Mi2+4Fi'>0且Fi'<0 时,平衡点为结点;(c)当Mi2+4Fi'<0且Mi≠0 时,平衡点为焦点;(d)当Fi'<0 且Mi=0 时,平衡点为中心.

  • 由Hartman-Grobman线性化定理知:非线性系统(17)与线性系统(18)有相同的平衡点(非中心平衡点).给定行波速度c与行波参数q*,则平衡点可解,以此判断平衡点的类型及稳定性.

  • 1.4 能源消耗模型

  • 能源消耗也是非常重要的研究内容,车辆在行驶过程中会有燃料消耗,统计燃料消耗的规律可以提醒驾驶员耗能情况.因此考虑分岔点附近能源消耗的影响有重要的意义.

  • 在进行数值模拟中,使用了Tang提出的相关模型[29]:

  • In(MOE)=qe=03 qo=03 Kqe,qoe×vqe×vt+vvqo
    (20)
  • 其中,MOE表示油耗,Kqeqoe为模型在(qeqo)处的回归系数,qe为速度功率,qo为加速功率.回归系数Kqeqoe的详细值见表1.

  • 表1 模型的参数值

  • Table1 Parameter values in model

  • 将(13)式和等式η=1/(ρm-ρ)带入(20)式,模型转化为宏观交通流模型的能源消耗,如下所示:

  • In(MOE)=qe=03 qo=03 Kqe,qoe×-c+q*ηρmη-1qe×2cyρmη-1η-q*ηρmη-12-c+q*ρmη-1ηqo
    (21)
  • 2 双参数分岔分析

  • 交通流的稳定性就是观察道路中的小扰动对交通流状态的影响,如果系统稳定,小扰动在传播中会逐渐减小,车辆畅行; 如果系统不稳定,小扰动向上游传播,逐渐造成交通拥堵.系统(17)为宏观交通流,其动力学行为对交通的预判有重要的影响.当行波参数q*和行波速度c变化时,交通流会出现自由流、走走停停、局部簇等现象.将行波参数q*作为次要控制参数,行波速度c作为控制参数,取行波参数q*>0,行波速度c<0. 其余参数数值如下: γ=0.5s-1vf=30m/s、ρm=0.2veh/m、a=0.1s-1δ=0.1s、λ=0.9s-1. 当行波参数q*给出定值,则平衡点的类型会随行波速度c的改变而变化,反之亦是如此.平衡点从一种类型转变成另一种时会出现分岔,由此变化可以得到不同的分岔结构.

  • 当行波参数q*和行波速度c变化时,能量消耗会有稳定或振荡等不同形态.下文通过双参数分岔来研究能量消耗在不同分岔结构下的特征.将行波参数q*和行波速度c都考虑进去,并研究不同值对交通流的影响.

  • 图1 双参数分岔分析

  • Fig.1 Two-parameter bifurcation analysis

  • 图1中有两条LP表示平衡点的鞍结分岔曲线(红色实线),由鞍点和结点相遇产生,并交于CP点.曲线HC 是同宿轨分岔,鞍点与极限环相遇产生(橙色实线); H曲线是Hopf分岔,焦点的稳定性发生改变(绿色实线); BT点表示余维2 Bogdanov-Takens分岔,是HC、H、LP三条曲线的交汇点; 由于,同宿轨分岔与Hopf分岔之间的变化范围太小,因此本文不考虑同宿轨分岔的影响.

  • 在图1(a)中蓝色虚线3取值为q*=0.8对应第3.1.1节中关于参数的分岔结构; 蓝色虚线4取值为q*=0.9011对应第3.1.2节中关于参数c的分岔结构.紫色虚线1的取值为c=-1.5对应第3.2.1节中关于参数q*的分岔结构; 紫色虚线2的取值为c=-5对应第3.2.2节中关于参数q*的分岔结构.

  • 3 单参数分岔分析

  • 3.1 关于参数c的单参数分岔分析

  • 3.1.1 关于参数c的鞍结分岔分析

  • 首先,我们研究鞍结分岔点附近交通流的动力学行为.当行波参数q*=0.8veh/s和行波速度c=-2.564veh/s时,取平衡点(η,0)=(6.586,0),则得到密度相对于行波速度的分岔结构如图2所示.其中红色实线由焦点组成,当施加小扰动时,密度振荡且振幅变得越来越小,最终稳定在焦点.洋红色虚线由鞍点组成,当施加小扰动时,密度有波动,最后稳定.

  • 图2 q*=0.8veh/s时参数c变化时的动力学分析

  • Fig.2 Dynamic analysis of parameter c at q*=0.8veh/s

  • 随着行波速度c值逐渐增大,稳定焦点与鞍点相遇,产生鞍结分岔LP3,此时的行波速度c=-7.88veh/s,鞍结分岔点η=8.836; 行波速度c值再增大,稳定焦点与另一鞍点相遇,产生鞍结分岔LP4,此时的行波速度c=0.9207veh/s,鞍结分岔点η=6.225.接下来分析鞍结分岔点附近交通流能源消耗动力学变化特征.

  • 模拟车辆运行过程中的燃油消耗,讨论鞍结分岔附近的变化规律如图3所示.为了研究能源消耗的规律,在关于c的单参数分岔轨迹上取值,舍去密度较大的鞍点(拥堵状态不做研究),找出鞍结分岔对能源消耗的影响(取值如图2绿色虚线所示).

  • 图3 q*=0.8veh/s时能源消耗动力学分析

  • Fig.3 Dynamic analysis of energy consumption at q*=0.8veh/s

  • 以LP4点为起点并标记为b1,随着参数c的减小依次研究.当c=0.9027时,b1(红色虚线η=6.225)为鞍结点,能耗值为一稳定常数0.075L; 当c=-0.7028时,交于b2、b3两点,b2(橘色双点线η=6.62)为稳定焦点,能耗值为常数0.026,b1<b2.由于密度增大,且受鞍点的作用能耗值达到最大; b3(绿色实线η=5.93)为鞍点,刚开始能耗值极低,由于焦点的吸引,在足够的时间空间内,b3的能耗值振荡后稳定在b2值0.026L,如图3(a)所示.对应交通现象为从拥堵到疏散,刚开始停车,然后加速减速最后趋于稳定行驶.

  • c=-2.546时,交于b4、b5两点,b4(红色虚线η=6.88)为稳定焦点,能耗值为常数0.022L; b5(橘色点横线η=5.82)为鞍点,与b3类似,由于焦点的作用,在足够的时间空间内,b5的能耗值稳定在b4值0.022L; 当c=-4.747时,交于b6、b7两点,b6(绿色点线η=7.23)为稳定焦点,能耗值为常数0.019L,由于两边鞍点对焦点的作用减弱,因此密度增大,能耗值变小; b7(黄色实线η=5.71)为鞍点,同理由于焦点的作用,在足够的时间空间内,b7的能耗值稳定在b6值0.019L,但是较b5的振动频率增大.当c=-7.882时,交于b8、b9两点,b8(蓝色短点横线η=8.836)为鞍结点LP3,能耗为一稳定常数0.025L; b9(紫色双点线η=5.64)由于密度极其小且行波速度较大相当于公路上几乎没有车辆所以能耗值极小,如图3(b)所示.

  • 当参数c相同时,鞍点轨迹经过振动后收敛至对应焦点轨迹,因此鞍点能耗值短暂变化后稳定在一定值.随着能耗值减小,振动频率也会增加,由于行波速度相同时,焦点和鞍点变化规律类似,因此分析焦点变化过程.

  • 分析焦点变化规律时,添加了b10(绿色双点线(cη)=(-3.57,7.03))能耗值为0.22L,b11(蓝色点横线(cη)=(-6.04,7.50))能耗值为0.17L两点.当两鞍点间-7.882<c<0.9207时,随着行波参数c的减小,由于鞍点和焦点之间的相互作用,能耗值会出现先增大后减小再增大的过程,即b1(0.075L)<b2(0.26L)>b4(0.25L)>b10(0.22L)>b6(0.19L)>b11(0.17L)<b8(0.0256L)成立.在稳定值中,鞍结点b1是能耗最小值,b2是能耗最大值如图3(c)所示.

  • 3.1.2 关于参数c的Hopf分岔分析

  • 其次,我们研究Hopf分岔点附近交通流的动力学行为.与鞍结分岔过程类似,只不过行波参数的取值改变,其他参数不变.当q*=0.9011veh/s时,密度相对于行波速度的分岔结构如图4所示.其中红色实线由焦点组成,洋红色虚线由鞍点组成,蓝色虚线由不稳定焦点组成,绿色虚线为极限环的最大值和最小值.

  • 随着行波速度c值逐渐增大,不稳定焦点与鞍点相遇,产生鞍结分岔LP1,此时的行波速度c=-0.9062veh/s,鞍结分岔点η=8.66.随着行波速度c值再次增大,稳定焦点与不稳定焦点相遇,产生Hopf 分岔H,此时的行波速度c=-8.666veh/s,Hopf分岔点η=7.98; 行波速度c值逐渐增大,稳定焦点与鞍点相遇,产生另一个鞍结分岔LP2,此时的行波速度c=-1.602veh/s,鞍结分岔点η=6.281.鞍结分岔在第3.1.1节做了分析,接下来分析Hopf分岔附近交通流动力学变化.

  • 图4 q*=0.9011veh/s时参数c变化时的动力学分析

  • Fig.4 The dynamic analysis of parameter c at q*=0.9011veh/s

  • 模拟车辆运行过程中的燃油消耗,讨论Hopf分岔附近的变化规律如图5 所示.在关于c的单参数分岔轨迹上取值,舍去密度较大的鞍点(拥堵状态不做研究),找出Hopf分岔对能源消耗影响(取值如图4蓝色虚线所示).

  • 以LP2点为起点且标记为a1,随着c的减小依次研究.当c=-1.602时,a1(红色虚线η=6.281)为鞍结分岔点,能耗值为一稳定常数0.0011L; 当c=-5.426时,交于a2、a3两点,a2(橘色点线η=7.05)为稳定焦点,能耗值为常数0.0204L,由于密度增大,a2能耗值比a1的大; a3(绿色实线η=5.85)为鞍点,从拥堵路段出发由于极限环的影响,整个路段会有较大的消耗.如图5(a)所示.相当于实际情况中排了很长的队在等红绿灯,几次红绿灯都无法通过,会出现加速减速循环过程.

  • 图5 q*=0.9011veh/s时能源消耗动力学分析

  • Fig.5 Dynamic analysis of energy consumption at q*=0.9011veh/s

  • c=-8.307时,交于a4、a5两点,a4(橘色实线η=10.202)为极限环上的点,能耗值为振荡形式; a5(红色虚线η=7.778)为稳定焦点,能耗值为常数0.01998L; a5值小于a2,由于两边鞍点对焦点的作用减弱,因此密度增大,能耗值变小,如图5(b)所示.

  • c=-8.525时,交于a6、a7两点,a6(绿色实线η=9.003)为极限环上的点,能耗值为等幅振荡形式,且振幅比a4小; a7(红色虚线η=7.88)为稳定焦点,能耗值为常数0.02207L.当c=-8.666时,a8(黄色点线η=7.98)为Hopf点,稳定与不稳定焦点的界限,能耗值为常数0.024L; 当c=-8.907时,a9(靛色点横线η=8.20)为不稳定焦点,能耗值为常数0.0325L; 当c=-8.907时,a10(蓝色双点横线η=8.66)为鞍结点LP1,能耗值为常数0.059L.如图5(c)所示.

  • 综上所述,随着参数的减小,由于鞍结点的作用,能耗值会出现先增大后减小再增大的过程,类似于图3(c)所示; 但由于Hopf点的作用,最大最小值分别为鞍结分岔点a10,a1; 当-8.666<c<-8.27时,出现极限环,随着参数c的减小,能耗值振幅越来越小,最终成为稳定消耗,且随密度的增大而增大,但不会超过能耗最大值a10.且鞍点由于受Hopf点的影响,变得越来越不稳定,超出预期值.

  • 3.2 关于参数q*的单参数分岔分析

  • 3.2.1 关于参数q*的鞍结分岔分析

  • 研究参数q*的鞍结分岔点附近交通流的动力学行为.当行波参数q*=0.8veh/s和行波速度c=-1.5veh/s时,取平衡点(η,0)=(6.586,0),则得到密度相对于行波参数q*的分岔结构如图6所示.其中红色实线由焦点组成,当施加小扰动时,密度振荡且振幅变得越来越小,最终稳定在焦点.洋红色虚线由鞍点组成,当施加小扰动时,密度有波动,最后稳定.

  • 随着行波参数q*值逐渐增大,稳定焦点与鞍点相遇,产生鞍结分岔LP11,此时的行波参数q*=0.187veh/s,鞍结分岔点η=11.25; 行波参数q*值再增大,稳定焦点与另一鞍点相遇,产生鞍结分岔LP12,此时的行波参数q*=0.8969veh/s,鞍结分岔η=6.279.接下来分析鞍结分岔点附近交通流能源消耗动力学变化特征.

  • 图6 c=-1.5veh/s时参数q*变化时的动力学分析

  • Fig.6 Dynamic analysis of parameter q* at c=-1.5veh/s

  • 为了研究能源消耗的规律,和第3.1节分析类似,在关于q*的单参数分岔轨迹上取值,舍去密度较大的鞍点(拥堵状态不做研究),找出鞍结分岔对能源消耗影响(取值如图6紫色虚线所示).

  • 以LP12点为起点并标记为c1,随着q*的减小依次研究.当q*=0.8969veh/s时,c1(黄色虚线η=6.279)为鞍结点,能耗值为一稳定常数0.000003L; 当q*=0.8veh/s时,交于c2、c3两点,c2(橙色短点横线η=6.738)为稳定焦点,能耗值为常数0.197L,c1<c2.由于密度增大,且受鞍点的作用能耗值增大,c3(黄色实线η=5.875)为鞍点,由于焦点的吸引,在足够的时间空间内,c3的能耗值稳定在c2值0.197L,如图7(a)所示.对应交通从拥堵到疏散,刚开始停车,然后加速减速最后趋于稳定行驶.

  • q*=0.7456veh/s时,交于c4、c5两点,c4(η=6.878)为稳定焦点,能耗值为常数0.505L; c5(η=5.778)为鞍点,能耗值从极低到振荡再稳定在c4值0.505L.当q*=0.5425veh/s时,交于c6、c7两点,c6(η=7.378)为稳定焦点,能耗值为常数0.63L; c7(η=5.506)为鞍点,能耗值从极低到振荡再稳定在c6值0.63L.当q*=0.2605veh/s时,交于c8、c9两点,c8(η=8.674)为稳定焦点,能耗值为常数0.61L; c9(η=5.222)为鞍点,能耗值从极低到振荡再稳定在c8值0.61L.

  • q*=0.1946veh/s时,交于c10、c11两点,c10(η=10.07)为稳定焦点,能耗值为常数0.59592L; c11(η=5.162)为鞍点,由于密度极其小且行波速度较大相当于公路上几乎没有车辆,所以能耗值极小.当q*=0.187veh/s时,c12(η=11.25)为鞍结点LP11,能耗为一稳定常数0.59071L.

  • 图7 c=-2.564veh/s时能源消耗动力学分析

  • Fig.7 Dynamic analysis of energy consumption at c=-2564veh/s

  • 由于与第3.1节分岔结构不同,重新比较焦点处的能源消耗变化.随着q*的减小依次取c1(黄色虚线)、c2(橙色短点横线)、c4(红色点横线)、c6(绿色双点线)、c8(蓝色虚线)、c10(紫色点线)、c12(黑色实线)进行分析,发现c1(0.00003L)<c2(0.197L)<c4(0.505L)<c6(0.63L)>c8(0.61L)>c10(0.59592L)>c12(0.5907L)成立.也就是随着行波参数q*的减小,由于鞍点和焦点之间的相互作用,能耗值会出现先增大后减小的过程,在稳定值中鞍结点c1是能耗最小值,c6是能耗最大值如图7(b)所示.

  • 与第3.1节相比鞍点的变化过程也有所改变,随着行波参数q*的减小依次取与焦点对应的鞍点c5(红色实线)、c7(橙色点横线)、c9(绿色点线)、c11(蓝色短点横线)进行分析,发现c5、c7、c9能耗值都稳定到对应焦点值,最终能耗值越大车辆密度越大,最后到低密度区,流量几乎没有,即极低消耗.如图7(c)所示.

  • 3.2.2 关于参数q*的Hopf分岔分析

  • 其次,我们研究Hopf分岔点附近交通流的动力学行为.与鞍结分岔过程类似,只不过行波速度c的取值改变,其他参数不变.当c=-5veh/s时,密度相对于行波参数的分岔结构如图8所示.其中红色实线由焦点组成,洋红色虚线由鞍点组成,蓝色虚线由不稳定焦点组成,绿色虚线为极限环的最大值和最小值.

  • 图8 c=-5veh/s时参数q*变化时的动力学分析

  • Fig.8 The dynamic analysis of parameter q* at c=-5veh/s

  • 随着行波参数q*值逐渐增大,不稳定焦点与鞍点相遇,产生鞍结分岔LP14,此时的行波参数q*=1.043veh/s,鞍结分岔点η=6.359.随着行波参数q*值再次增大,稳定焦点与不稳定焦点相遇,产生Hopf 分岔H,此时的行波参数q*=0.9019veh/s,Hopf分岔点η=6.98; 行波参数q*值逐渐增大,稳定焦点与鞍点相遇,产生另一个鞍结分岔LP13,此时的行波参数q*=0.5403veh/s,鞍结分岔点η=9.424.鞍结分岔在第3.2.1节已经做了分析,接下来分析Hopf分岔附近交通流动力学变化.

  • 模拟车辆运行过程中的燃油消耗,讨论Hopf分岔附近的变化规律如图9 所示.在关于q*的单参数分岔轨迹上取值,舍去密度较大的鞍点(拥堵状态不做研究),找出Hopf分岔对能源消耗的影响(取值如图8黄色虚线所示).

  • 以LP14点为起点且标记为d1,随着q*的减小依次研究.当q*=1.043时,d1(红色虚线η=6.359)为鞍结分岔LP13,能耗值为一稳定常数0.000002L; 当q*=1.004时,交于d2、d3两点,d2(橘色短点线η=6.651)为不稳定焦点,能耗值有不稳定波动但波动较小趋于稳定; d3(黄色点线η=6.103)为鞍点,先有较大波动,随后稳定.当q*=0.9483时,交于d4、d5两点,d4(绿色点横线η=6.843)为不稳定焦点,由于接近Hopf分岔,所以从稳定变成了不稳定波动最后稳定; d5(蓝色实线η=5.945)为鞍点,先有较大波动,随后稳定如图9(a)所示.

  • q*=0.9019时,d6(η=6.98)为Hopf点能耗值为常数0.205L.当q*=0.9017时,d7(η=7.193)为极限环上的点,能耗值变成等幅振荡; 当q*=0.7085时,交于d8、d9两点,d8(η=7.59)为稳定焦点,能耗值为常数0.417L; d9(η=5.611)为鞍点,能耗值从极低到振荡再稳定在d8值0.417L.

  • q*=0.5977时,交于d10、d11两点,d10(η=8.189)为稳定焦点,能耗值为常数0.588L; d11(η=5.495)为鞍点,能耗值从极低到振荡再稳定在d10值0.588L.

  • q*=0.5403时,交于d12、d13两点,d12(η=9.424)为鞍结点LP14,能耗值为常数0.631L; d13(η=5.441)为鞍结点对应鞍点,与前几次分岔不同的是,能耗值从极低到振荡再稳定在d12值0.631L.

  • q*=0.5381时,过了鞍结分岔点,d14(η=5.439)为鞍点,能耗值从极低到振荡再到不稳定,说明过了鞍结分岔点能耗值不稳定.

  • 图9 c=-5veh/s时能源消耗动力学分析

  • Fig.9 Dynamic analysis of energy consumption at c=-5veh/s

  • 为了寻找能源消耗变化规律,稳定焦点随着q*的减小依次取d6(红色虚线)、d8(橙色点线)、d10(黄色点横线)、d12(绿色短点横线)发现d6(0.205L)<d8(0.417L)<d10(0.588L)<d12(0.631L).随着行波参数q*的减小,能耗值不断增大.如图9(b)所示.

  • 接着在鞍点处,随着行波参数q*的减小依次取与焦点对应的值d9(红色实线)、d11(橙色虚线)、d13(黄色点线)、d14(绿色点横线)进行分析,随着行波参数q*的减小,能耗值振荡后的值越来越大,最终不稳定.如图9(c)所示.

  • 综上所述,随着行波参数q*的减小,由于Hopf点的作用焦点处能耗值随密度的增大而增大; 极限环的能耗值会发生等幅振荡,鞍点处的最终稳定值会越来越大最终不稳定.

  • 4 结论

  • 本文提出了一个最优速度随记忆变化的交通流模型.首先,通过宏观和微观的转变和状态变量之间的变量代换,将车辆拥堵问题转化为系统稳定性问题; 其次,通过双参数分岔,了解各参数之间的相互影响,并通过双参数分岔和单参数分岔之间的关系,改变行波参数q*和行波速度c的值得到不同单参数分岔结构,确定极限环、鞍结分岔和Hopf分岔的值,并做动力学分析; 再次,通过数值模拟了分岔点附近能源消耗,通过对极限环、焦点和鞍点的动力学分析,解释了不同动力学行为对能源消耗的影响,分析了对应的交通现象,提高了高速公路观测到的走走停停波和局部簇的理解.最后,了解了能耗值在不同分岔结构、焦点和鞍点上的变化规律,因此通过分析我们知道能耗值在鞍点处由于密度的不同会有振荡或者不稳定结构; 在焦点处由于鞍点的作用力会变大; 在极限环处会有等幅振荡现象,根据极限环的大小会有相应大小的振幅.结合能源消耗在单参数分岔点的变化规律,得到能源消耗在单参数分岔曲线上的变化规律.

  • 数值结果表明,驾驶员记忆的时间长度对交通流的稳定性有重要影响。总之,分析结果和数值模拟都表明,随记忆变化的最优速度可以进一步提高交通流的稳定性。分岔分析方法可以描述和预测高速公路上的非线性交通现象和能源消耗.

  • 参考文献

    • [1] ARDAKANI M,YANG J,SUN L.Stimulus response driving behavior:An improved general motor vehicle-following model [J].Advanced in Transportation Studies,2016,39(16):23-36.

    • [2] SUN L,PAN Y,GU W.Data mining using regularized adaptive B-splines regression with penalization for multi-regime traffic flow models [J].Journal of advanced Transportation,2014,48(014):876-890.

    • [3] WU X C,SONG T,ZHANG P.Phase-plane analysis of a conserved higher-order traffic flow model [J].Applied Mathematics and Mechanics,2012,33(12):1403-1410.

    • [4] SUN L,YANG J,MAHMASSANI H,et al.Data mining-based adaptive regression for developing equilibrium speed-density relationships [J].Canadian Journal of Civil Engineering,2010,37(3):389-400.

    • [5] XONG W,SUN L,ZHOU J.Spline-based multi-regime traffic stream models [J].Journal of Southeast University,2010,26(26):122-125.

    • [6] SUN L,ZHOU J.Development of multi-regime speed-density relationships by cluster analysis [J].Journal of Transportation Research Board,2005,1934(1):64-71.

    • [7] HELBING D.Derivation and empirical validation of a refined traffic flow model [J].Physica A,1996,233(1-2):253-282.

    • [8] BANDO M,HASEBE K,NAKAYAMA A,et al.Dynamical model of traffic congestion and numerical simulation [J].Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics,1995,51(2):1035-1042.

    • [9] HELBING D,TILCH B.Generalized force model of traffic dynamics [J].Physical Review E,1998,58(1998):133-138.

    • [10] JIANG R,WU Q,ZHU Z.Full velocity difference model for a car-following theory [J].Physical Review E,2001,64(1-2):017101-017111.

    • [11] DAVIS L C.Modifications of the optimal velocity traffic model to include delay due to driver reaction time [J].Physica A,2003,319(2):557-567.

    • [12] GE H X,CHENG R J,LI Z P.Two velocity difference model for a car following theory [J].Physica A:Statistical Mechanics and its Applications,2012,387(21):5239-5245.

    • [13] ZHENG L J,TIAN C,SUN D H,et al.A new car-following model with consideration of anticipation driving behavior [J].Nonlinear Dynamics,2012,70(2):1205-1211.

    • [14] ZHANG X,JARRETT D F.Stability analysis of the classical car-following model [J].Transportation Research Part B Methodological,1997,31(6):441-462.

    • [15] TANG T Q,JING L I,WANG Y P,et al.Vehicle's fuel consumption of car-following models [J].Science China Technological Sciences,2013,56(5):1307-1312.

    • [16] RICHARDS P I.Shockwaves on the highway [J].Operations Research,1956,4(1):42-51.

    • [17] WU C X.Phase-plane analysis to an “anisotropic” higher-order traffic flow model [J].International Journal of Modern Physics B,2018,32(9):1-13.

    • [18] HE H D,LU W Z,XUE Y.Prediction of PM10 concentrations at urban traffic intersections using semi-empirical box modelling with instantaneous velocity and acceleration [J].Atmospheric Environment,2009,43(40):6336-6342.

    • [19] KAMARIANAKIS Y,GAO H O.Evaluating effects of engine operating variables on particle number emission rates using robust regression models [J].Transportation Research Record Journal of the Transportation Research Board,2011,2233(1):36-44.

    • [20] ZEGEYE S K,SCHUTTER B D,HELLENDOORN J,et al.Integrated macroscopic traffic flow,emission,and fuel consumption model for control purposes [J].Transportation research,2013,31(7):158-171.

    • [21] JIANG Y Q,MA P J,ZHOU S G.Macroscopic modeling approach to estimate traffic-related emissions in urban areas [J].Transportation Research Part D,2018,60(2018):41-55.

    • [22] JIANG R,WU Q S,ZHU Z J.A new continuum model for traffic flow and numerical tests [J].Transportation Research Part B,2002,36(5):405-419.

    • [23] AHN K,RAKHA H,TRANI A,et al.Estimating vehicle fuel consumption and emissions based on instantaneous speed and acceleration levels [J].Journal of Transportation Engineering,2002,128(2):182-190.

    • [24] WANG T,CHENG R J,GE H X.Analysis of a novel two-lane lattice hydrodynamic model considering the empirical lane changing rate and the self-stabilization effect [J].IEEE Access,2019,7(99):174725-174733.

    • [25] CHENG R J,GE H X,WANG J F.An extended continuum model accounting for the driver's timid and aggressive attributions [J].Physics Letters A,2017,381(15):1302-1312.

    • [26] 杜勇,化存才,郑治波.一种岔路口分流交通流格子模型的孤立波分析 [J].动力学与控制学报,2013,11(2):133-136.DU Y,HUA C C,ZHENG Z B,et al.Analysis of soliton in a split-flow traffic flow lattice model on the crossing road [J].Journal of Dynamics and Control,2013,11(2):133-136.(in Chinese)

    • [27] CAO B G.A new car-following model considering driver’s sensory memory [J].Physica A:Statistical Mechanics and Its Applications,2015,427(2015):218-225.

    • [28] 郑伟范,邓绯,江宝山.几种随机相互作用势相关的交通流模型比较 [J].动力学与控制学报,2017,15(1):80-86.ZHENG W F,DENG F,JIANG B S.Comparison of several interactional potential related traffic flow models [J].Journal of Dynamics and Control,2017,15(1):80-86.(in Chinese)

    • [29] TANG T Q,HUANG H J,SHANG H Y.An extended macro traffic flow accounting for the driver’s bounded rationality and numerical tests [J].Physica A:Statistical Mechanics and Its Applications,2017,468(2017):322-333.

    • [30] LI T.Nonlinear dynamics of traffic jams [J].Physica D:Nonlinear Phenomena,2005,207(1-2):41-51.

    • [31] 杜勇,武佳,尹吉庆.考虑司机反应延迟和次近邻车辆影响的格子模型 [J].动力学与控制学报,2015,13(1):72-76.DU Y,WU J,YIN J Q.A lattice model considering driver response delay and the influence of next-neighbor vehicles [J].Journal of Dynamics and Control,2015,13(1):72-76.(in Chinese)

    • [32] KERNER B S,KONHAUSER P.Cluster effect in initially homogeneous traffic flow [J].Physical Review E,1993,48(4):2335-2338.

    • [33] DELGADO J,SAAVEDRA P.Global bifurcation diagram for the Kerner-Konhauser traffic flow model [J].International Journal of Bifurcation and Chaos,2015,25(5):1-31.

    • [34] 艾文欢.交通流非线性现象分支分析方法研究[D].西安:西北工业大学,2016.AI W H.Research on the branch analysis method of traffic flow nonlinear phenomena.[D].Xian:Northwestern Polytechnical University,2016.(in Chinese)

    • [35] REN W L,CHENG R J,GE H X.Bifurcation control in an optimal velocity model via double time-delay feedback method [J].IEEE Access,2020,8(2020):216162-216175.

    • [36] REN W L,CHENG R J,GE H X.Bifurcation analysis of a heterogeneous continuum traffic flow model [J].Applied Mathematical Modelling,2021,94(2021):369-387.

    • [37] ZHAI Q T,GE H X,CHENG R J.An extended continuum model considering optimal velocity change with memory and numerical tests [J].Physica A:Statistical Mechanics and its Applications,2018,490(2018):774-785.

  • 参考文献

    • [1] ARDAKANI M,YANG J,SUN L.Stimulus response driving behavior:An improved general motor vehicle-following model [J].Advanced in Transportation Studies,2016,39(16):23-36.

    • [2] SUN L,PAN Y,GU W.Data mining using regularized adaptive B-splines regression with penalization for multi-regime traffic flow models [J].Journal of advanced Transportation,2014,48(014):876-890.

    • [3] WU X C,SONG T,ZHANG P.Phase-plane analysis of a conserved higher-order traffic flow model [J].Applied Mathematics and Mechanics,2012,33(12):1403-1410.

    • [4] SUN L,YANG J,MAHMASSANI H,et al.Data mining-based adaptive regression for developing equilibrium speed-density relationships [J].Canadian Journal of Civil Engineering,2010,37(3):389-400.

    • [5] XONG W,SUN L,ZHOU J.Spline-based multi-regime traffic stream models [J].Journal of Southeast University,2010,26(26):122-125.

    • [6] SUN L,ZHOU J.Development of multi-regime speed-density relationships by cluster analysis [J].Journal of Transportation Research Board,2005,1934(1):64-71.

    • [7] HELBING D.Derivation and empirical validation of a refined traffic flow model [J].Physica A,1996,233(1-2):253-282.

    • [8] BANDO M,HASEBE K,NAKAYAMA A,et al.Dynamical model of traffic congestion and numerical simulation [J].Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics,1995,51(2):1035-1042.

    • [9] HELBING D,TILCH B.Generalized force model of traffic dynamics [J].Physical Review E,1998,58(1998):133-138.

    • [10] JIANG R,WU Q,ZHU Z.Full velocity difference model for a car-following theory [J].Physical Review E,2001,64(1-2):017101-017111.

    • [11] DAVIS L C.Modifications of the optimal velocity traffic model to include delay due to driver reaction time [J].Physica A,2003,319(2):557-567.

    • [12] GE H X,CHENG R J,LI Z P.Two velocity difference model for a car following theory [J].Physica A:Statistical Mechanics and its Applications,2012,387(21):5239-5245.

    • [13] ZHENG L J,TIAN C,SUN D H,et al.A new car-following model with consideration of anticipation driving behavior [J].Nonlinear Dynamics,2012,70(2):1205-1211.

    • [14] ZHANG X,JARRETT D F.Stability analysis of the classical car-following model [J].Transportation Research Part B Methodological,1997,31(6):441-462.

    • [15] TANG T Q,JING L I,WANG Y P,et al.Vehicle's fuel consumption of car-following models [J].Science China Technological Sciences,2013,56(5):1307-1312.

    • [16] RICHARDS P I.Shockwaves on the highway [J].Operations Research,1956,4(1):42-51.

    • [17] WU C X.Phase-plane analysis to an “anisotropic” higher-order traffic flow model [J].International Journal of Modern Physics B,2018,32(9):1-13.

    • [18] HE H D,LU W Z,XUE Y.Prediction of PM10 concentrations at urban traffic intersections using semi-empirical box modelling with instantaneous velocity and acceleration [J].Atmospheric Environment,2009,43(40):6336-6342.

    • [19] KAMARIANAKIS Y,GAO H O.Evaluating effects of engine operating variables on particle number emission rates using robust regression models [J].Transportation Research Record Journal of the Transportation Research Board,2011,2233(1):36-44.

    • [20] ZEGEYE S K,SCHUTTER B D,HELLENDOORN J,et al.Integrated macroscopic traffic flow,emission,and fuel consumption model for control purposes [J].Transportation research,2013,31(7):158-171.

    • [21] JIANG Y Q,MA P J,ZHOU S G.Macroscopic modeling approach to estimate traffic-related emissions in urban areas [J].Transportation Research Part D,2018,60(2018):41-55.

    • [22] JIANG R,WU Q S,ZHU Z J.A new continuum model for traffic flow and numerical tests [J].Transportation Research Part B,2002,36(5):405-419.

    • [23] AHN K,RAKHA H,TRANI A,et al.Estimating vehicle fuel consumption and emissions based on instantaneous speed and acceleration levels [J].Journal of Transportation Engineering,2002,128(2):182-190.

    • [24] WANG T,CHENG R J,GE H X.Analysis of a novel two-lane lattice hydrodynamic model considering the empirical lane changing rate and the self-stabilization effect [J].IEEE Access,2019,7(99):174725-174733.

    • [25] CHENG R J,GE H X,WANG J F.An extended continuum model accounting for the driver's timid and aggressive attributions [J].Physics Letters A,2017,381(15):1302-1312.

    • [26] 杜勇,化存才,郑治波.一种岔路口分流交通流格子模型的孤立波分析 [J].动力学与控制学报,2013,11(2):133-136.DU Y,HUA C C,ZHENG Z B,et al.Analysis of soliton in a split-flow traffic flow lattice model on the crossing road [J].Journal of Dynamics and Control,2013,11(2):133-136.(in Chinese)

    • [27] CAO B G.A new car-following model considering driver’s sensory memory [J].Physica A:Statistical Mechanics and Its Applications,2015,427(2015):218-225.

    • [28] 郑伟范,邓绯,江宝山.几种随机相互作用势相关的交通流模型比较 [J].动力学与控制学报,2017,15(1):80-86.ZHENG W F,DENG F,JIANG B S.Comparison of several interactional potential related traffic flow models [J].Journal of Dynamics and Control,2017,15(1):80-86.(in Chinese)

    • [29] TANG T Q,HUANG H J,SHANG H Y.An extended macro traffic flow accounting for the driver’s bounded rationality and numerical tests [J].Physica A:Statistical Mechanics and Its Applications,2017,468(2017):322-333.

    • [30] LI T.Nonlinear dynamics of traffic jams [J].Physica D:Nonlinear Phenomena,2005,207(1-2):41-51.

    • [31] 杜勇,武佳,尹吉庆.考虑司机反应延迟和次近邻车辆影响的格子模型 [J].动力学与控制学报,2015,13(1):72-76.DU Y,WU J,YIN J Q.A lattice model considering driver response delay and the influence of next-neighbor vehicles [J].Journal of Dynamics and Control,2015,13(1):72-76.(in Chinese)

    • [32] KERNER B S,KONHAUSER P.Cluster effect in initially homogeneous traffic flow [J].Physical Review E,1993,48(4):2335-2338.

    • [33] DELGADO J,SAAVEDRA P.Global bifurcation diagram for the Kerner-Konhauser traffic flow model [J].International Journal of Bifurcation and Chaos,2015,25(5):1-31.

    • [34] 艾文欢.交通流非线性现象分支分析方法研究[D].西安:西北工业大学,2016.AI W H.Research on the branch analysis method of traffic flow nonlinear phenomena.[D].Xian:Northwestern Polytechnical University,2016.(in Chinese)

    • [35] REN W L,CHENG R J,GE H X.Bifurcation control in an optimal velocity model via double time-delay feedback method [J].IEEE Access,2020,8(2020):216162-216175.

    • [36] REN W L,CHENG R J,GE H X.Bifurcation analysis of a heterogeneous continuum traffic flow model [J].Applied Mathematical Modelling,2021,94(2021):369-387.

    • [37] ZHAI Q T,GE H X,CHENG R J.An extended continuum model considering optimal velocity change with memory and numerical tests [J].Physica A:Statistical Mechanics and its Applications,2018,490(2018):774-785.

  • 微信公众号二维码

    手机版网站二维码