en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

杨蔡进,E-mail:ycj78_2012@163.com

中图分类号:U461.1

文献标识码:A

文章编号:1672-6553-2023-21(1)-036-009

DOI:10.6052/1672-6553-2021-064

参考文献 1
吴振宇,赵亮,冯林.基于分数阶PID控制器的智能车控制 [J].控制工程,2011,18(3):401-404.WU Z Y,ZHAO L,FENG L.Intelligent vehicle control based on fractional order PID controller [J].Control Engineering of China,2011,18(3):401-404.(in Chinese)
参考文献 2
CHEN X W,ZHOU Y,ZHANG J G,et al.A synergetic strategy of automobile intelligent cruise system based on fuzzy control adopting hierarchical structure [J].International Journal of Advanced Robotic Systems,2019,16(5):1-13.
参考文献 3
黄禀通,朱建军,周忠伟,等.并联式混合动力汽车模糊控制策略优化 [J].机械设计与制造,2020(12):293-297.HUANG B T,ZHU J J,ZHOU Z W,et al.Optimization of fuzzy control strategy for parallel hybrid electric vehicle [J].Machinery Design & Manufacture,2020(12):293-297.(in Chinese)
参考文献 4
JIN Z K,LIANG Z Y,GUO P F,et al.Adaptive backstepping tracking control of a car with n trailers based on RBF neural network [J].Asian Journal of Control,2019,23(2):824-834.
参考文献 5
杨兴明,李文静,朱建.基于RBF神经网络的机器人的路径跟踪控制 [J].合肥工业大学学报(自然科学版),2015,38(11):1477-1483.YANG X M,LI W J,ZHU J.Path tracking control of robot based on RBF neural network [J].Journal of Hefei University of Technology(Natural Science),2015,38(11):1477-1483.(in Chinese)
参考文献 6
SMAIN A T B,FAIZA H,NADIA S.Experimentations on the adaptive sliding mode control for a trajectory tracking applied on a bi-steerable car [J].International Journal of Vehicle Design,2015,69(1):285-303.
参考文献 7
江绍康,江浩斌,马世典.基于反演滑模自适应策略的自动泊车路径跟踪控制 [J].重庆理工大学学报(自然科学),2020,34(10):9-16.JIANG S K,JIANG H B,MA S D.Automatic parking path tracking control based on inverse sliding mode adaptive strategy [J].Journal of Chongqing University of Technology(Natural Science),2020,34(10):9-16.(in Chinese)
参考文献 8
BUDDHADEVA S,SANGRAM K R,PRAVAT K R.Robust control approach for stability and power quality improvement in electric car [J].International Transactions on Electrical Energy Systems,2020,30(12):1-23.
参考文献 9
聂枝根,王超,王万琼,等.基于动态预警的人车共驾智能汽车侧向避障鲁棒控制 [J].重庆大学学报,2021,44(6):1-12.NIE Z G,WANG C,WANG W Q,et al.Robust control of lateral obstacle avoidance for intelligent vehicles driven by people and vehicles based on dynamic early warning [J].Journal of Chongqing University,2021,44(6):1-12.(in Chinese)
参考文献 10
GUO H Y,CAO D P,CHEN H,et al.Model predictive path following control for autonomous cars considering a measurable disturbance:implementation,testing,and verification [J].Mechanical Systems and Signal Processing,2019,118:41-60.
参考文献 11
周维,过学迅,裴晓飞,等.基于RRT与MPC的智能车辆路径规划与跟踪控制研究 [J].汽车工程,2020,42(9):1151-1158.ZHOU W,GUO X X,PEI X F,et al.Research on intelligent vehicle path planning and tracking control based on RRT and MPC [J].Automotive Engineering,2020,42(9):1151-1158.(in Chinese)
参考文献 12
张京,陈度,王书茂,等.农用轮式机器人四轮独立转向驱动控制系统设计与试验 [J].农业工程学报,2015,31(18):63-70.ZHANG J,CHEN D,WANG S M,et al.Design and test of four wheels independent steering drive system for agricultural wheeled robot [J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(18):63-70.(in Chinese)
参考文献 13
TU X Y,GAI J Y,TANG L.Robust navigation control of a 4WD/4WS agricultural robotic vehicle [J].Computers and Electronics in Agriculture,2019,164:1-9.
参考文献 14
赵立军,邓宁宁,罗念宁,等.基于直接横摆力矩的四轮转向/驱动滑模控制 [J].华南理工大学学报(自然科学版),2015,45(8):69-75.ZHAO L J,DENG N N,LUO N N,et al.Four wheels steering/drive sliding mode control based on direct yaw moment [J].Journal of South China University of Technology(Natural Science Edition),2015,45(8):69-75.(in Chinese)
参考文献 15
WANG C Y,HENG B,ZHAO W Z.Yaw and lateral stability control for four-wheel-independent steering and four-wheel-independent driving electric vehicle [J].Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering,2020,234(2-3):409-422.
参考文献 16
徐坤,王云超,沈建.四轮独立驱动电动汽车四轮转向和横摆力矩联合控制仿真 [J].集美大学学报(自然科学版),2018,23(2):139-144.XU K,WANG Y C,SHEN J.Simulation of combined control of four-wheel steering and yaw moment for four-wheel independent drive electric vehicle [J].Journal of Jimei University(Natural Science),2018,23(2):139-144.(in Chinese)
参考文献 17
刘金琨.RBF神经网络自适应控制 [M].北京:清华大学出版社,2014.LIU J K.RBF neural network adaptive control [M].Beijing:Tsinghua University Press,2014.(in Chinese)
参考文献 18
范李,李刚炎,陈冉,等.客车急转工况下转向稳定的横向力系数与转弯半径计算 [J].华南理工大学学报(自然科学版),2017,45(2):39-45.FAN L,LI G Y,CHEN R,et al.Calculation of lateral force coefficient and turning radius of steering stability under bus sudden turn condition [J].Journal of South China University of Technology(Natural Science Edition),2017,45(2):39-45.(in Chinese)
参考文献 19
吴道兰.轮胎磨耗的影响因素 [J].橡胶工业,1991,38(4):237-244.WU D L.Influencing factors of tire wear [J].China Rubber Industry,1991,38(4):237-244.(in Chinese)
参考文献 20
赵亚元.子午线轮胎胎面磨耗性能的有限元分析[D].青岛:青岛科技大学,2015.ZHAO Y Y.Finite element analysis of tread wear performance of radial tire[D].Qingdao:Qingdao University of Science and Technology,2015.(in Chinese)
目录contents

    摘要

    针对四轮独立驱动、独立转向汽车循迹控制精度和转向稳定性兼容问题,同时考虑减小轮胎磨损,延长轮胎使用寿命,本文基于阿克曼转向原理和RBF神经网络PID理论,提出了一种自适应的循迹控制方法.首先,设计了基于RBF神经网络PID理论的自适应转向控制器,用于控制前内轮转角,保证循迹精度;其次,后内轮以减小质心侧偏角为目标进行辅助转向,保证转向稳定性;接着,基于阿克曼转向原理,确定外轮转角,保证各轮侧偏力分配合理;最后,采用同一瞬心法,确定各车轮转速,以减小轮胎滑动率.本文搭建了CarSim和MATLAB/Simulink联合仿真平台,进行了仿真实验,结果表明:本文提出的循迹控制方法,不仅能获得较小的循迹偏差和质心侧偏角,保证了足够的循迹控制精度和转向稳定性,同时还减小了轮胎滑动率,有利于减小轮胎的磨耗.

    Abstract

    Aiming at compatibility of tracking control accuracy and steering stability of four-wheel independent drive and independent steering vehicles, and considering reducing tire wear and improving tire service life, an adaptive tracking control method is proposed based on Ackerman steering principle and RBF neural network PID theory. Firstly, an adaptive steering controller based on RBF neural network PID theory is designed to control the front inner wheel angle and ensure tracking accuracy. Secondly, the rear inner wheel carries out auxiliary steering with a goal of reducing the sideslip angle of center of mass to ensure steering stability. Then, based on Ackerman steering principle, the outer wheel angle is determined to ensure reasonable distribution of side deflection force of each tire. Finally, the same instantaneous center method is used to determine the spin speed of each wheel to reduce tire slip rate. In this paper, a joint simulation platform of CarSim and MATLAB/Simulink is built and simulation experiments are carried out. The results show that the tracking control method proposed in this paper can not only obtain small tracking deviation and centroid sideslip angle, which ensure sufficient tracking control accuracy and steering stability, but also reduce tire slip rate, which is conducive to reducing the tire wear.

  • 引言

  • 随着互联网技术和5G技术的快速发展,无人驾驶成为汽车领域的热门方向.而循迹控制作为无人驾驶技术的关键部分,也成为学者们的重要研究方向,诸多的控制方法也随之被应用到循迹控制中,包括传统的PID控制[1]、具有自适应能力的模糊控制[23]和神经网络控制[45]、具有鲁棒性的滑模控制[67]和鲁棒控制[89]以及基于车辆动力学模型的模型预测控制[1011]等.四轮独立驱动、独立转向汽车因具有更好的动力特性和转向稳定性,也成为搭载无人驾驶循迹控制技术的优良载体和学者们的研究热点.张京等[12]基于低速阿克曼转向模型和PID控制算法,针对四轮独立转向驱动的农用机器人设计了一种转向驱动控制系统,取得了较高的转向控制和转速控制精度.Tu等[13]研究了一种基于反推滑模控制的四轮转向四轮驱动农业机器人车辆鲁棒控制器,提高了对高自由度非完整系统的控制能力和鲁棒性.赵立军等[14]针对四轮独立驱动、独立转向汽车的转向稳定性问题,提出了一种基于直接横摆力矩的滑模变结构控制算法,可以将车辆的质心侧偏角和横摆角速度控制在理想的范围内.Wang等[15]开发了一种新型线控四轮独立驱动、独立转向电动车,提出了一种基于轮胎力最优分配的在线可重构转向角和驱动力分配控制方法,提高了转向控制器的稳定性.徐坤等[16]提出了一种基于横摆力矩的控制策略,以提高四轮独立驱动、四轮转向汽车的低速机动性和高速稳定性.

  • 虽然已有针对提高四轮独立驱动、独立转向汽车循迹精度或转向稳定性的相关研究,但循迹精度和转向稳定性的研究大多是孤立进行的,鲜有兼顾两者的研究工作.本文以四轮独立驱动、独立转向汽车的循迹控制作为研究对象,以提高循迹控制精度和转向稳定性为主要目的,同时兼顾减小轮胎磨耗、延长轮胎寿命的目的,考虑到车辆实际运行环境的复杂性和非线性,提出了一种基于阿克曼转向原理和RBF神经网络PID理论的自适应循迹控制方案:利用RBF神经网络实时调节PID参数,确定内轮转角,以使车辆在变曲率道路上行驶时,能够取得较高的循迹精度和转向稳定性; 通过阿克曼转向原理确定外轮转角,合理分配侧偏力,保证较小的轮胎侧偏角; 利用同一瞬心确定各轮转速,进行差速驱动,保证车轮以较小的滑动率转动,以减小轮胎磨耗、延长轮胎寿命.

  • 1 车辆建模

  • 1.1 动力学模型

  • 本文研究对象为四轮独立驱动、独立转向汽车,并做出以下假设:车辆仅做平行于地面的平面运动,视车辆纵向速度为匀速.其对应的包含侧向运动和横摆运动的二自由度车辆动力学模型如图1所示.

  • 图1 4WID/4WIS汽车二自由度动力学模型

  • Fig.1 Two degrees of freedom dynamic model of 4WID / 4WIS vehicle

  • 车辆侧向运动为:

  • mu(β˙+w)=Fyflcosδfl+Fyfrcosδfr+Fyrlcosδrl+Fyrrcosδrr+Fxflsinδfl+Fxfrsinδfr-Fxrlsinδrl-Fxrrsinδrr
    (1)
  • 车辆横摆运动为:

  • IZω˙=Fyflacosδfl+0.5LWsinδfl+Fyfracosδfr-0.5LWsinδfr-Fyrlbcosδrl+0.5LWsinδrl-Fyrrbcosδrr-0.5LWsinδrr+Fxflasinδfl-0.5LWcosδfl+Fxfrasinδfr+0.5LWcosδfr+Fxrlbsinδrl-0.5LWcosδrl+

  • Fxrrbsinδrr+0.5LWcosδrr
    (2)
  • 上式中,m为整车质量; u为质心纵向速度; β为车辆质心侧偏角; w为车辆横摆角速度; Fyij为各轮胎侧偏力; Fxij为各轮胎纵向力; δij为各车轮转角,i代表前轮(f)或后轮(r),j代表左轮(l)或右轮(r); IZ为车辆绕Z轴的转动惯量.

  • 线性范围内轮胎侧偏力计算为:

  • Fy=kα
    (3)
  • 式中,k为轮胎侧偏刚度; α为轮胎侧偏角.由图1可得轮胎侧偏角为:

  • αfl=β+wau-δfl
    (4)
  • αfr=β+wau-δfr
    (5)
  • αrl=β-wbu-δrl
    (6)
  • αrr=β-wbu-δrr
    (7)
  • 线性范围内轮胎纵向力计算为:

  • Fx=cs
    (8)
  • 式中,c为轮胎纵向滑移刚度; s为轮胎滑动率,s=(wwr-uw)/uw×100%,ww为车轮旋转角速度,r为轮胎半径,uw为车轮纵向速度,uw=ucosδ-α.

  • 在小转角条件下,近似取cos δ = 1-0.1δ,sin δ = δ,综合上式,可得二自由度汽车运动微分方程为:

  • mu(β˙+w)=j=l,ri=f,r ξ1+(-1)mξ210uβ+(-1)mlξ1u+lξ210uw-ξ1δij+(-1)mξ2ξ3
    (9)
  • IZw˙=j=l,ri=f,r (-1)mξ4+ξ510uβ+lξ4u+(-1)mlξ510uw-(-1)mξ4δij+ξ3ξ5
    (10)
  • 其中,

  • ξ1=kij1-0.1δij
    (11)
  • ξ2=cijδijwijr
    (12)
  • ξ3=1-0.2δiju-1wwijr
    (13)
  • ξ4=kijl1-0.1δij+(-1)nLWδij2
    (14)
  • ξ5=cijwwijrlδij+(-1)n+1LW1-0.1δij2
    (15)
  • 上式中,l=ai=fbi=rm=2i=f1i=rn=2j=l1j=r.

  • 1.2 模型验证

  • 为验证模型的正确性,将本文所建的车辆模型与CarSim软件提供的车辆模型一起进行仿真对比:仿真前5s为匀速直线运动,车辆纵向速度保持在27.6km/h; 第5s至第5.1s之间,前轮转角增至8°,后轮转角跟随前轮进行比例转向增至2.4°; 转向稳定后,转弯半径在14.4m左右,侧向加速度在4.09m/s2左右.仿真结果如图2所示.

  • 由图2结果可知,本文所建的车辆二自由度动力学模型与CarSim提供的车辆模型相比较,转向稳定之后,在横摆角速度上相差了0.25°/s左右,在质心侧偏角上相差了0.05°左右,误差均在较小范围以内,由此也证明了本文所建模型的正确性.

  • 图2 车辆动力学模型仿真验证

  • Fig.2 Simulation verification of vehicle dynamics model

  • 2 控制器设计

  • 2.1 转向控制器

  • 径向基(RBF)神经网络具有强大的自学习和非线性拟合能力,其结构如图3所示,包括一个输入层、一个中间层和一个输出层[17].

  • 图3 RBF神经网络结构

  • Fig.3 RBF neural network structure

  • 图4 转向控制器系统结构

  • Fig.4 Steering controller system structure

  • 本文将基于阿克曼转向原理与RBF神经网络PID理论,设计一种可根据道路曲率变化自主调节参数的自适应转向控制器,控制器系统结构如图4所示.系统输入为目标轨迹(S0)和目标质心侧偏角(β0),系统输出为车辆实际运行轨迹(St)和实际质心侧偏角(βt),RBF神经网络的输入包括系统输入rin、系统输出y以及被控参数urbf.RBF神经网络经过算法整定输出调整后的PID参数,PID控制器再经过运算输出被控车辆的两个内轮转角(δin),同时再基于阿克曼转向原理计算两个外轮转角(δout),最后共同作用于被控车辆.前内轮以质心横向偏差作为控制目标,以保证循迹精度; 后内轮以车辆质心侧偏角作为控制目标,以保证转向稳定性; 两个外轮基于阿克曼转向原理确定转角,以保证各轮侧偏角控制在较小范围内,避免因侧偏角过大,超过粘着极限而发生侧滑.

  • 确定车辆各轮转角,首先需通过RBF神经网络PID控制器确定车辆两个内轮转角.结合图3和图4,需要先确定RBF神经网络的隐含层节点hj:

  • hj=exp-x-crbfj2brbfj2
    (16)
  • 式中,crbf=crbflcrbfmTcrbfj=crbfljCrbfnj Tcrbfij为隐含层各节点中心,brbfj为隐含层各节点基宽.

  • RBF神经网络的系统输出为:

  • ym=h1wrbf1+h2wrbf2++hmwrbfm
    (17)
  • 更新隐含层的输出权值wrbf、节点中心crbf以及基宽brbf:

  • wrbfj(t)=wrbfj(t-1)+εwrbfj(t-1)-wrbfj(t-2)+ηy(t)-ym(t)hj
    (18)
  • crbfij(t)=crbfij(t-1)+εcrbfij(t-1)-crbfij(t-2)+ηy(t)-ym(t)wrbfjhjxi-crbfijbrbfj2
    (19)
  • brbfj(t)=brbfj(t-1)+εbrbfj(t-1)-brbj(t-2)+ηy(t)-ym(t)wjhjx-crbfj2bj3
    (20)
  • 式中,ε∈(0,1)为动量因子,η∈(0,1)为学习速率.

  • RBF神经网络参数更新完之后,需要进行PID控制参数的更新,本次研究采用增量式PID控制器,误差输入为:

  • e(t)=rin(t)-y(t)
    (21)
  • 更新PID控制器参数:

  • kp(t)=kp(t-1)+Δkp(t)
    (22)
  • ki(t)=ki(t-1)+Δki(t)
    (23)
  • kd(t)=kd(t-1)+Δkd(t)
    (24)
  • 其中,

  • Δkp(t)=ηe(t)yurbf(e(t)-e(t-1))
    (25)
  • Δki(t)=ηe(t)yurbfe(t)
    (26)
  • Δkd(t)=ηe(t)yurbf(e(t)-2e(t-1)+e(t-2))
    (27)
  • 上式中,yurbf反映被控车辆的输出y对被控参数urbf变化的灵敏程度,其值由下式计算得到:

  • yurbfymurbf=j=1m wrbfjhjcrbflj-x1brbfj2
    (28)
  • 综合以上各式,最终可计算得到车辆被控参数urbf,即内轮转角δin:

  • urbf(t)=urbf(t-1)+kp(t)(e(t)-e(t-1))+ki(t)e(t)+kd(t)(e(t)-2e(t-1)+e(t-2))
    (29)
  • 通过RBF神经网络PID控制器确定了车辆的两个内轮转角之后,可再根据阿克曼转向原理确定两个外轮的转角,以左转为例,其转向原理如图5所示.

  • 图5 阿克曼转向原理

  • Fig.5 Ackerman steering principle

  • 根据图5,已知前后两内轮转角,在△AOC中,γ=δfl-αfl+δrl-αrl,根据正弦定理可求得前内轮到转动中心的距离RA以及后内轮到转动中心的距离RC:

  • RA=Lsinγsin0.5π-δrl-αrl
    (30)
  • RC=Lsinγsin0.5π-δfl+αfl
    (31)
  • 在△AOB中,BAO=π-δfl+αfl,由余弦定理可求得前外轮到转动中心的距离RB:

  • RB=RA2+LW2-2RALWcosπ-δfl+αfl
    (32)
  • 在△AOB中,根据正弦定理可求得前外轮转角δfr:

  • δfr=arcsinRAsinπ-δfl+αflRB+αfr
    (33)
  • 在△OCD中,OCD=π-δrl-αrl,由余弦定理可求得后外轮到转动中心的距离RD:

  • RD=RC2+LW2-2RCLWcosπ-δrl-αrl
    (34)
  • 在△OCD中,根据正弦定理可求得后外轮转角δrr:

  • δrr=arcsinRCsinπ-δrl-αrlRD-αrr
    (35)
  • 2.2 速度控制器

  • 当车辆在直线运行时,各轮转速相等,故轮速计算公式如下:

  • n=30u/πr
    (36)
  • 上式中,u为质心的纵向速度,r为车轮半径.当车辆在曲线运行时,由于各轮绕转动中心的转动半径不同,而转动的角速度相同,这就需要进行差速驱动辅助转向,使各轮在曲线运行时产生不同的速度,从而减小轮胎的滑动率,减小磨耗.结合图5,通过车辆动力学模型求得车辆的横摆角速度之后,可再根据车辆与各车轮的同一转动顺心O确定其余各轮的转速n:

  • n=30RR/πr
    (37)
  • 式中,R为各轮心到转动中心的距离,w为车辆质心的横摆角速度.

  • 由于前轮转向时会引起质心侧偏角的改变,而质心侧偏角的改变又会引起后轮做出相应转向,故在直线与曲线的交接处,仅前轮转向而后轮不转向的时间差非常小,可忽略不计.

  • 3 仿真验证

  • 3.1 仿真实验

  • 本次研究将以CarSim软件提供的一款B级车为基础,相关参数如表1所示.根据本次研究的需要,将其设置为四轮独立驱动、独立转向的汽车,并屏蔽掉软件自身对该车运动的控制作用,然后与MATLAB/Simulink进行联合仿真,CarSim的输入包括四个车轮的转角和驱动力矩,CarSim的输出包括质心坐标、速度和航向角等信息.

  • 本次仿真实验的目标轨迹如图6所示,包含3条直线段和5条圆弧段:一条30m长的直线段,两条半径25m的反向圆弧段,一条半径20m的圆弧段,一条长20m的直线段,一条半径60m的圆弧段,一条半径15m的圆弧段和一条长30m的直线段.该轨迹组成复杂,包含了现实生活中汽车行驶所能遇到的绝大部分道路工况:直线道路、大/小曲率曲线道路、直线曲线过渡段和不同曲率曲线过渡段,该轨迹能够很好地检验控制方案的控制效果.

  • 表1 CarSim车辆模型主要参数

  • Table1 Main parameters of CarSim vehicle model

  • 图6 目标轨迹

  • Fig.6 Target trajectory

  • 图7 车轮转角

  • Fig.7 Wheel steering angle

  • 图8 轮胎侧偏角

  • Fig.8 Tire sideslip angle

  • 图9 车轮转速

  • Fig.9 Wheel rotation speed

  • 图10 轮胎滑动率

  • Fig.10 Tire slip rate

  • 汽车转弯时的行驶速度不仅会影响到循迹精度,还会影响到转向稳定性,转弯速度过慢,则无法验证控制算法的优越性; 转弯速度过快,则可能会导致侧滑甚至侧翻问题,故确定好汽车转向时的速度十分有必要.本文将以横向力系数μ作为确定汽车转向速度的一个参考标准.横向力系数直接关系到汽车转向时的稳定性和车内人员的舒适性、安全感,研究表明:当μ < 0.2时,车内乘员有轻微过弯感,车辆行驶平稳; 当μ > 0.35时,车内乘员明显感觉到有曲线的存在,并会产生一定的紧张感,车辆有侧滑趋势; 当μ > 0.4时,车内乘员均感觉到危险,车辆有侧向倾覆的趋势[18].为此,本文取μ = 0.4作为最大横向力系数来确定车辆的行驶速度,计算公式如下

  • u=gRrμ+ih
    (38)
  • 上式中,g为重力加速度,g=9.8m/s2; Rr为转弯半径,本文取其为最小转弯半径Rr=15m; ih为路面超高,由于本文仅考虑平面运动,故取ih=0.综上,本次循迹仿真实验车辆行驶速度取为u=7.67m/s=27.6km/h.

  • 3.2 仿真结果

  • 为验证本文提出的控制方案的优越性,本次仿真实验,基于同样的控制方法,分别对不考虑阿克曼转向和差速驱动转向(图7~图12中的Method1)、仅考虑阿克曼转向(Method2)、仅考虑差速驱动转向(Method3)以及本文提出的既考虑阿克曼转向又考虑差速驱动转向(图7~图12Method4)这四种控制方案进行了仿真对比分析.

  • 图11 横向偏差

  • Fig.11 Lateral deviation

  • 图12 质心侧偏角

  • Fig.12 Centroid sideslip angle

  • 综合以上各方案的仿真结果可知,无论是否考虑阿克曼转向和差速驱动转向,基于RBF神经网络PID理论的自适应循迹控制算法都能达到较好的循迹效果,都能取得较小的循迹横向偏差和质心侧偏角.由图11可知,同时考虑阿克曼转向和差速驱动转向可以进一步提高循迹效果,可以获得更小的循迹横向偏差和质心侧偏角:车辆在半径15m的最小曲线道路行驶时,最大横向误差可控制在3cm左右,且整个循迹过程的最大质心侧偏角能保持在0.4°以内,稳定运行时可将质心侧偏角控制在0°左右.

  • 由图8和图10可知,不考虑阿克曼转向和差速驱动转向、仅考虑阿克曼转向以及仅考虑差速驱动转向这三种方案,即便都能达到较好的循迹效果,但同时也存在着轮胎侧偏角分布不均、单个轮胎侧偏角过大或轮胎滑动率较大等问题:车辆在半径15m的最小曲线道路行驶时,不考虑阿克曼转向和差速驱动转向以及仅考虑阿克曼转向控制方案的最大轮胎侧偏角都达到了-5°,是同时考虑阿克曼转向和差速驱动转向方案的2倍左右,且轮胎滑动率也都接近9%,是同时考虑阿克曼转向和差速驱动转向方案的9倍左右; 仅考虑差速驱动转向的控制方案虽然能将轮胎侧偏角控制在较小范围内,但最大轮胎滑动率是同时考虑阿克曼转向和差速驱动转向方案的2倍左右.而轮胎磨耗与轮胎侧偏角呈正比关系[19],且轮胎滑动率越大,轮胎胎面越容易发生撕裂、割伤以及磨损等问题,且滑动率越大,因摩擦生热,胎面温度也会越高,温度升高也会加剧轮胎的损伤[20].可见这些问题并不能因为仅考虑阿克曼转向或仅考虑差速驱动转向而得到解决.而同时考虑阿克曼转向和差速驱动转向的方案,不仅可以达到更好的循迹效果,还能更好地进行轮胎侧偏力的分配,使各个轮胎的侧偏角更小且更为相近,避免某个轮胎因为侧偏角过大、超过黏着极限而导致的侧滑问题,保证了车辆的转向稳定性,同时更小的侧偏角对于减小轮胎磨耗也具有积极作用.此外,该方案还能保证更小的轮胎滑动率,提高车辆的操纵性能,减小因滑移/转而产生的滑动摩擦所导致的轮胎磨耗,有利于延长轮胎的使用寿命.

  • 4 结论

  • 针对同时提高四轮独立驱动、独立转向汽车循迹精度和转向稳定性问题,并兼顾减小轮胎磨耗、延长轮胎使用寿命,本文为车辆的横向控制设计了基于阿克曼转向原理和RBF神经网络PID理论的自适应转向控制器,保证了较小的循迹偏差和质心侧偏角; 并为纵向控制设计了基于同一瞬心原理的转速控制器,保证了较小的轮胎滑动率,减小轮胎磨耗.

  • 基于CarSim和MATLAB/Simulink联合仿真平台,本文进行了多种控制方案的对比仿真实验,结果表明本文所提出的基于RBF神经网络PID理论,同时考虑阿克曼转向和基于同一瞬心的差速驱动的循迹控制方案,在保证高循迹精度和转向稳定性的同时,还能合理分配轮胎侧偏力,减小轮胎侧偏角和滑动率,有利于延长轮胎的使用寿命.

  • 本文研究只进行了包含横向运动和横摆运动的二自由度车辆模型的循迹控制研究,尚未考虑侧倾、俯仰、垂向和纵向运动等多自由度、非平面运动工况,下一步将以此为基础逐步展开更为精细、深入的研究.

  • 参考文献

    • [1] 吴振宇,赵亮,冯林.基于分数阶PID控制器的智能车控制 [J].控制工程,2011,18(3):401-404.WU Z Y,ZHAO L,FENG L.Intelligent vehicle control based on fractional order PID controller [J].Control Engineering of China,2011,18(3):401-404.(in Chinese)

    • [2] CHEN X W,ZHOU Y,ZHANG J G,et al.A synergetic strategy of automobile intelligent cruise system based on fuzzy control adopting hierarchical structure [J].International Journal of Advanced Robotic Systems,2019,16(5):1-13.

    • [3] 黄禀通,朱建军,周忠伟,等.并联式混合动力汽车模糊控制策略优化 [J].机械设计与制造,2020(12):293-297.HUANG B T,ZHU J J,ZHOU Z W,et al.Optimization of fuzzy control strategy for parallel hybrid electric vehicle [J].Machinery Design & Manufacture,2020(12):293-297.(in Chinese)

    • [4] JIN Z K,LIANG Z Y,GUO P F,et al.Adaptive backstepping tracking control of a car with n trailers based on RBF neural network [J].Asian Journal of Control,2019,23(2):824-834.

    • [5] 杨兴明,李文静,朱建.基于RBF神经网络的机器人的路径跟踪控制 [J].合肥工业大学学报(自然科学版),2015,38(11):1477-1483.YANG X M,LI W J,ZHU J.Path tracking control of robot based on RBF neural network [J].Journal of Hefei University of Technology(Natural Science),2015,38(11):1477-1483.(in Chinese)

    • [6] SMAIN A T B,FAIZA H,NADIA S.Experimentations on the adaptive sliding mode control for a trajectory tracking applied on a bi-steerable car [J].International Journal of Vehicle Design,2015,69(1):285-303.

    • [7] 江绍康,江浩斌,马世典.基于反演滑模自适应策略的自动泊车路径跟踪控制 [J].重庆理工大学学报(自然科学),2020,34(10):9-16.JIANG S K,JIANG H B,MA S D.Automatic parking path tracking control based on inverse sliding mode adaptive strategy [J].Journal of Chongqing University of Technology(Natural Science),2020,34(10):9-16.(in Chinese)

    • [8] BUDDHADEVA S,SANGRAM K R,PRAVAT K R.Robust control approach for stability and power quality improvement in electric car [J].International Transactions on Electrical Energy Systems,2020,30(12):1-23.

    • [9] 聂枝根,王超,王万琼,等.基于动态预警的人车共驾智能汽车侧向避障鲁棒控制 [J].重庆大学学报,2021,44(6):1-12.NIE Z G,WANG C,WANG W Q,et al.Robust control of lateral obstacle avoidance for intelligent vehicles driven by people and vehicles based on dynamic early warning [J].Journal of Chongqing University,2021,44(6):1-12.(in Chinese)

    • [10] GUO H Y,CAO D P,CHEN H,et al.Model predictive path following control for autonomous cars considering a measurable disturbance:implementation,testing,and verification [J].Mechanical Systems and Signal Processing,2019,118:41-60.

    • [11] 周维,过学迅,裴晓飞,等.基于RRT与MPC的智能车辆路径规划与跟踪控制研究 [J].汽车工程,2020,42(9):1151-1158.ZHOU W,GUO X X,PEI X F,et al.Research on intelligent vehicle path planning and tracking control based on RRT and MPC [J].Automotive Engineering,2020,42(9):1151-1158.(in Chinese)

    • [12] 张京,陈度,王书茂,等.农用轮式机器人四轮独立转向驱动控制系统设计与试验 [J].农业工程学报,2015,31(18):63-70.ZHANG J,CHEN D,WANG S M,et al.Design and test of four wheels independent steering drive system for agricultural wheeled robot [J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(18):63-70.(in Chinese)

    • [13] TU X Y,GAI J Y,TANG L.Robust navigation control of a 4WD/4WS agricultural robotic vehicle [J].Computers and Electronics in Agriculture,2019,164:1-9.

    • [14] 赵立军,邓宁宁,罗念宁,等.基于直接横摆力矩的四轮转向/驱动滑模控制 [J].华南理工大学学报(自然科学版),2015,45(8):69-75.ZHAO L J,DENG N N,LUO N N,et al.Four wheels steering/drive sliding mode control based on direct yaw moment [J].Journal of South China University of Technology(Natural Science Edition),2015,45(8):69-75.(in Chinese)

    • [15] WANG C Y,HENG B,ZHAO W Z.Yaw and lateral stability control for four-wheel-independent steering and four-wheel-independent driving electric vehicle [J].Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering,2020,234(2-3):409-422.

    • [16] 徐坤,王云超,沈建.四轮独立驱动电动汽车四轮转向和横摆力矩联合控制仿真 [J].集美大学学报(自然科学版),2018,23(2):139-144.XU K,WANG Y C,SHEN J.Simulation of combined control of four-wheel steering and yaw moment for four-wheel independent drive electric vehicle [J].Journal of Jimei University(Natural Science),2018,23(2):139-144.(in Chinese)

    • [17] 刘金琨.RBF神经网络自适应控制 [M].北京:清华大学出版社,2014.LIU J K.RBF neural network adaptive control [M].Beijing:Tsinghua University Press,2014.(in Chinese)

    • [18] 范李,李刚炎,陈冉,等.客车急转工况下转向稳定的横向力系数与转弯半径计算 [J].华南理工大学学报(自然科学版),2017,45(2):39-45.FAN L,LI G Y,CHEN R,et al.Calculation of lateral force coefficient and turning radius of steering stability under bus sudden turn condition [J].Journal of South China University of Technology(Natural Science Edition),2017,45(2):39-45.(in Chinese)

    • [19] 吴道兰.轮胎磨耗的影响因素 [J].橡胶工业,1991,38(4):237-244.WU D L.Influencing factors of tire wear [J].China Rubber Industry,1991,38(4):237-244.(in Chinese)

    • [20] 赵亚元.子午线轮胎胎面磨耗性能的有限元分析[D].青岛:青岛科技大学,2015.ZHAO Y Y.Finite element analysis of tread wear performance of radial tire[D].Qingdao:Qingdao University of Science and Technology,2015.(in Chinese)

  • 参考文献

    • [1] 吴振宇,赵亮,冯林.基于分数阶PID控制器的智能车控制 [J].控制工程,2011,18(3):401-404.WU Z Y,ZHAO L,FENG L.Intelligent vehicle control based on fractional order PID controller [J].Control Engineering of China,2011,18(3):401-404.(in Chinese)

    • [2] CHEN X W,ZHOU Y,ZHANG J G,et al.A synergetic strategy of automobile intelligent cruise system based on fuzzy control adopting hierarchical structure [J].International Journal of Advanced Robotic Systems,2019,16(5):1-13.

    • [3] 黄禀通,朱建军,周忠伟,等.并联式混合动力汽车模糊控制策略优化 [J].机械设计与制造,2020(12):293-297.HUANG B T,ZHU J J,ZHOU Z W,et al.Optimization of fuzzy control strategy for parallel hybrid electric vehicle [J].Machinery Design & Manufacture,2020(12):293-297.(in Chinese)

    • [4] JIN Z K,LIANG Z Y,GUO P F,et al.Adaptive backstepping tracking control of a car with n trailers based on RBF neural network [J].Asian Journal of Control,2019,23(2):824-834.

    • [5] 杨兴明,李文静,朱建.基于RBF神经网络的机器人的路径跟踪控制 [J].合肥工业大学学报(自然科学版),2015,38(11):1477-1483.YANG X M,LI W J,ZHU J.Path tracking control of robot based on RBF neural network [J].Journal of Hefei University of Technology(Natural Science),2015,38(11):1477-1483.(in Chinese)

    • [6] SMAIN A T B,FAIZA H,NADIA S.Experimentations on the adaptive sliding mode control for a trajectory tracking applied on a bi-steerable car [J].International Journal of Vehicle Design,2015,69(1):285-303.

    • [7] 江绍康,江浩斌,马世典.基于反演滑模自适应策略的自动泊车路径跟踪控制 [J].重庆理工大学学报(自然科学),2020,34(10):9-16.JIANG S K,JIANG H B,MA S D.Automatic parking path tracking control based on inverse sliding mode adaptive strategy [J].Journal of Chongqing University of Technology(Natural Science),2020,34(10):9-16.(in Chinese)

    • [8] BUDDHADEVA S,SANGRAM K R,PRAVAT K R.Robust control approach for stability and power quality improvement in electric car [J].International Transactions on Electrical Energy Systems,2020,30(12):1-23.

    • [9] 聂枝根,王超,王万琼,等.基于动态预警的人车共驾智能汽车侧向避障鲁棒控制 [J].重庆大学学报,2021,44(6):1-12.NIE Z G,WANG C,WANG W Q,et al.Robust control of lateral obstacle avoidance for intelligent vehicles driven by people and vehicles based on dynamic early warning [J].Journal of Chongqing University,2021,44(6):1-12.(in Chinese)

    • [10] GUO H Y,CAO D P,CHEN H,et al.Model predictive path following control for autonomous cars considering a measurable disturbance:implementation,testing,and verification [J].Mechanical Systems and Signal Processing,2019,118:41-60.

    • [11] 周维,过学迅,裴晓飞,等.基于RRT与MPC的智能车辆路径规划与跟踪控制研究 [J].汽车工程,2020,42(9):1151-1158.ZHOU W,GUO X X,PEI X F,et al.Research on intelligent vehicle path planning and tracking control based on RRT and MPC [J].Automotive Engineering,2020,42(9):1151-1158.(in Chinese)

    • [12] 张京,陈度,王书茂,等.农用轮式机器人四轮独立转向驱动控制系统设计与试验 [J].农业工程学报,2015,31(18):63-70.ZHANG J,CHEN D,WANG S M,et al.Design and test of four wheels independent steering drive system for agricultural wheeled robot [J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(18):63-70.(in Chinese)

    • [13] TU X Y,GAI J Y,TANG L.Robust navigation control of a 4WD/4WS agricultural robotic vehicle [J].Computers and Electronics in Agriculture,2019,164:1-9.

    • [14] 赵立军,邓宁宁,罗念宁,等.基于直接横摆力矩的四轮转向/驱动滑模控制 [J].华南理工大学学报(自然科学版),2015,45(8):69-75.ZHAO L J,DENG N N,LUO N N,et al.Four wheels steering/drive sliding mode control based on direct yaw moment [J].Journal of South China University of Technology(Natural Science Edition),2015,45(8):69-75.(in Chinese)

    • [15] WANG C Y,HENG B,ZHAO W Z.Yaw and lateral stability control for four-wheel-independent steering and four-wheel-independent driving electric vehicle [J].Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering,2020,234(2-3):409-422.

    • [16] 徐坤,王云超,沈建.四轮独立驱动电动汽车四轮转向和横摆力矩联合控制仿真 [J].集美大学学报(自然科学版),2018,23(2):139-144.XU K,WANG Y C,SHEN J.Simulation of combined control of four-wheel steering and yaw moment for four-wheel independent drive electric vehicle [J].Journal of Jimei University(Natural Science),2018,23(2):139-144.(in Chinese)

    • [17] 刘金琨.RBF神经网络自适应控制 [M].北京:清华大学出版社,2014.LIU J K.RBF neural network adaptive control [M].Beijing:Tsinghua University Press,2014.(in Chinese)

    • [18] 范李,李刚炎,陈冉,等.客车急转工况下转向稳定的横向力系数与转弯半径计算 [J].华南理工大学学报(自然科学版),2017,45(2):39-45.FAN L,LI G Y,CHEN R,et al.Calculation of lateral force coefficient and turning radius of steering stability under bus sudden turn condition [J].Journal of South China University of Technology(Natural Science Edition),2017,45(2):39-45.(in Chinese)

    • [19] 吴道兰.轮胎磨耗的影响因素 [J].橡胶工业,1991,38(4):237-244.WU D L.Influencing factors of tire wear [J].China Rubber Industry,1991,38(4):237-244.(in Chinese)

    • [20] 赵亚元.子午线轮胎胎面磨耗性能的有限元分析[D].青岛:青岛科技大学,2015.ZHAO Y Y.Finite element analysis of tread wear performance of radial tire[D].Qingdao:Qingdao University of Science and Technology,2015.(in Chinese)

  • 微信公众号二维码

    手机版网站二维码