摘要
研究了简谐激励下双弹簧非线性能量阱(NES)的优化问题.建立了线性振子(LO)附加NES的动力学方程,通过Runge-Kutta法计算系统响应.以最小化LO扫频区间的稳态位移振幅最大值为目标,采用差分进化算法和参数分析方法优化NES的参数,并对比线性吸振器(LVA)的优化结果.研究结果表明,相比LVA,NES实现较好减振效果的弹簧刚度范围更大,NES的较优参数区域和幅频响应容易受激励幅值的影响.
2021-01-24收到第1稿,2021-02-22收到修改稿.
振动在日常生活中是一种常见的物理现象.很多时候人们不希望机器发生振动,因为振动会产生噪声、降低使用寿命和给人体造成不适,为此人们致力于通过各种方式抑制有害的振动.
现有的振动控制方式主要分为主动控制、半主动控制和被动控制.相比以智能材料和控制算法为特征的主动和半主动控
Gendelman
为了拓宽NES减振所需的能量条件,AL-Shudeifa
以上简要介绍了线性和非线性吸振器的特点,实际中我们需要确定吸振器的最优减振效果及参数配置,以此发掘它的潜在应用价值.另外,由于制造误差和环境等因素,吸振器的参数会有微小波动,此时需要找到吸振器的较优减振效果及参数配置,评价其鲁棒性.因此,本文将通过差分进化(Differential Evolution,DE)算法和参数分析优化简谐激励下能实现立方刚度和双稳态特点的双弹簧NES,并对比LVA,说明两者的区别和联系以及NES的应用价值.
本文研究的单自由度线性振子(Linear Oscillator,LO)附加双弹簧NES模型如

图1 LO附加双弹簧NES的力学模型
Fig. 1 Model of LO with NES
利用牛顿第二定律,系统控制方程可以写为
(1) |
其中T为时间.方程(1)的无量纲形式为
(2) |
其中(·)表示对无量纲时间t求导.各无量纲参数和变量的表达式为
(3) |
本文将参照LVA的结果衡量NES的减振效果,由于LO附加LVA系统的无量纲参数表达式与LO附加双弹簧NES系统的一致,方便起见,将ε、c2、ks和x2统称为吸振器的无量纲质量、阻尼、弹簧刚度和位移.由于NES在简谐激励下会存在准周期、强调制和混沌运动,传统的半解析方法(比如摄动法和广义谐波平衡法)不能准确预测这些响应的时间历程,而Runge-Kutta法可以,因此本文将利用Runge-Kutta法得到的结果对NES进行优化.设定Runge-Kutta法的计算时长为100个周期,时间步长为一个周期的1/200,截取时程末尾的周期个数为20,在所有的激励频率下系统位移和速度初值均为0,激励频率ω的变化范围和步长为0. 8~1. 2和0. 02.
DE算法通常被用来求非线性、不可微问题的最优解,具有速度快、鲁棒性好的特点.本文将采用DE算法优化双弹簧NES的四个参数(ε、c2、ks和l1)和LVA的三个参数(ε、c2和ks),其流程图如

图2 DE算法流程图
Fig. 2 Flow chart of DE algorithm
本文关注小质量吸振器在扫频简谐激励下的表现,吸振器的参数优化范围为1
(4) |
接着我们通过参数分析验证DE算法的结果,比较NES和LVA较优减振效果对应的参数范围.

图3 ε=0. 02时振幅衰减率随LVA阻尼和弹簧刚度的变化关系
Fig. 3 Amplitude decaying rate of with varied damping and spring stiffness of LVA and ε=0. 02

(a)

(b)
图4 ε=0. 02和c2=0. 004时振幅衰减率随NES几何参数和弹簧刚度的变化关系:(a)f0=0. 005;(b)f0=0. 1
Fig. 4 Amplitude decaying rate of with varied geometry parameter and spring stiffness of NES, ε=0. 02, and c2=0. 004: (a) f0=0. 005; (b) f0=0. 1
进一步我们选取两种典型的NES几何构型,即双稳态和单稳态弹簧无伸长NES的减振效果在两种激励幅值下随NES阻尼和弹簧刚度的变化关系,如

(a)

(b)
图5 ε=0. 02和f0=0. 005时振幅衰减率随NES阻尼和弹簧刚度的变化关系:(a)l1=0. 99;(b)l1=1
Fig. 5 Amplitude decaying rate of with varied damping and spring stiffness of NES, ε=0. 02, and f0=0. 005: (a) l1=0. 99; (b) l1=1

(a)

(b)
图6 ε=0. 02和f0=0. 1时振幅衰减率随NES阻尼和弹簧刚度的变化关系:(a)l1=0. 99;(b)l1=1
Fig. 6 Amplitude decaying rate of with varied damping and spring stiffness of NES, ε=0. 02, and f0=0. 1: (a) l1=0. 99; (b) l1=1
以上讨论了LVA和NES的参数优化特点,那么优化后系统的响应会是怎样的呢?

(a)

(b)
图7 ε=0. 02和f0=0. 005时LO、最优LVA和NES的幅频响应:(a)l1=0. 99;(b)l1=1
Fig. 7 Frequency response of LO and optimal LVA and NES with ε=0. 02 and f0=0. 005: (a) l1=0. 99; (b) l1=1

(a)

(b)
图8 ε=0. 02和f0=0. 1时LO、最优LVA和NES的幅频响应:
Fig. 8 Frequency response of LO and optimal LVA and NES with
(a)l1=0. 99;(b)l1=1
;ε=0.02 and f0=0. 1: (a) l1=0. 99; (b) l1=1
通过DE算法和参数分析优化简谐激励下的LVA和双弹簧NES,主要结论如下:
(1)最优LVA和最优NES在对LO扫频最大振幅的抑制效果、质量和阻尼大小上无明显差别.
(2)相比LVA,NES可以在较大的弹簧刚度范围内实现较好的减振效果.
(3)激励幅值对NES最优抑制效果的影响不大,但对NES较优参数区域和幅频响应的影响很大.
(4)零刚度NES适用于小幅激励,减振效果不及最优LVA和双稳态NES,但不改变系统共振频率.
参考文献
陶鸿飞,崔升. 压电智能结构的主动控制及压电执行器布局优化. 动力学与控制学报,2019,17(3):234~243 [百度学术]
Tao H F,Cui S. Active control of piezoelectric structures and optimal placement of piezoelectric actuators. Journal of Dynamics and Control,2019,17(3):234~243(in Chinese) [百度学术]
赵义伟,杨绍普,刘永强,等. 基于列车悬挂系统的半主动混合控制仿真分析. 动力学与控制学报,2020,18(3):38~43 [百度学术]
Zhao Y W,Yang S P,Liu Y Q,et al. Simulation analysis of semi-active hybrid control of train suspension system. Journal of Dynamics and Control,2020,18(3):38~43(in Chinese) [百度学术]
徐明,黄庆生,李刚. 车辆半主动悬架智能控制方法研究现状. 机床与液压,2021,49(1):169~174 [百度学术]
Xu M,Huang Q S,Li G. Research status of intelligent control method for vehicle semi-active suspension. Machine Tool & Hydraulics,2021,49(1):169~174(in Chinese) [百度学术]
罗锟,张新亚,王鹏生,等. 基于TMD的U型梁结构低频振动控制研究. 北京交通大学学报,2020,44(6):51~58 [百度学术]
Luo Q,Zhang X Y,Wang P S,et al. Research on low-frequency vibration control of U-shaped girder structure based on TMD. Journal of Beijing Jiaotong University,2020,44(6):51~58(in Chinese) [百度学术]
李杨,李强,李飞,等. 基于被动式调谐质量阻尼器的风力机结构振动控制. 船舶工程,2020,42(S2):215~221 [百度学术]
Li Y,Li Q,Li F,et al. Vibration control of wind turbine structure based on passive tuned mass damper. Ship Engineering,2020,42(S2):215~221(in Chinese) [百度学术]
Chen H Y,Mao X Y,Ding H,et al. Elimination of multimode resonances of composite plate by inertial nonlinear energy sinks. Mechanical Systems and Signal Processing,2020,135:106383 [百度学术]
Gendelman O,Manevitch L I,Vakakis A F,et al. Energy pumping in nonlinear mechanical oscillators: part I—dynamics of the underlying hamiltonian systems. Journal of Applied Mechanics,2001,68(1):34~41 [百度学术]
Vakakis A F,Gendelman O. Energy pumping in nonlinear mechanical oscillators: part II—resonance capture. Journal of Applied Mechanics,2001,68(1):42~48 [百度学术]
Jiang X A,Mcfarland D M,Bergman L A,et al. Steady state passive nonlinear energy pumping in coupled oscillators: theoretical and experimental results. Nonlinear Dynamics,2003,33(1):87~102 [百度学术]
Gendelman O V,Starosvetsky Y,Feldman M. Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: description of response regimes. Nonlinear Dynamics,2007,51(1-2):31~46 [百度学术]
Starosvetsky Y,Gendelman O V. Attractors of harmonically forced linear oscillator with attached nonlinear energy sink II: optimization of a nonlinear vibration absorber. Nonlinear Dynamics,2007,51(1-2):47~57 [百度学术]
Gourdon E,Alexander N A,Taylor C A,et al. Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results. Journal of Sound and Vibration,2007,300(3-5):522~551 [百度学术]
AL-Shudeifat M A. Highly efficient nonlinear energy sink. Nonlinear Dynamics,2014,76(4):1905~1920 [百度学术]
Romeo F,Sigalov G,Bergman L A,et al. Dynamics of a linear oscillator coupled to a bistable light attachment: numerical study. Journal of Computational and Nonlinear Dynamics,2015,10(1):011007 [百度学术]
Qiu D H,Li T,Seguy S,et al. Efficient targeted energy transfer of bistable nonlinear energy sink: application to optimal design. Nonlinear Dynamics,2018,92(2):443~461 [百度学术]
Habib G,Romeo F. The tuned bistable nonlinear energy sink. Nonlinear Dynamics,2017,89(1):179~196 [百度学术]
Yao H L,Wang Y W,Xie L Q,et al. Bi-stable buckled beam nonlinear energy sink applied to rotor system. Mechanical Systems and Signal Processing,2020,138:106546 [百度学术]
Chen Y Y,Qian Z C,Zhao W,et al. A magnetic bi-stable nonlinear energy sink for structural seismic control. Journal of Sound and Vibration,2020,473:115233 [百度学术]