摘要
基于防屈曲支撑钢框架(BRBSF)和摇摆防屈曲支撑钢框架(RBRBSF)拟静力试验,建立BRBSF和RBRBSF的有限元模型,利用OpenSees有限元软件对试验框架中采用的梁端削弱截面(RBS)进行分析,研究RBS对BRBSF和RBRBSF性能影响,并基于有限元模型进一步分析BRB参数对RBRBSF的影响.研究结果表明,梁端设置RBS可减小BRBSF梁柱节点弯矩,实现塑性铰外移,但对RBRBSF梁柱节点弯矩影响较小,BRB参数的改变对RBRBSF屈服荷载和承载能力有一定影响,但对框架柱轴力影响较小.
防屈曲支撑(BRB)作为一种新型耗能元件,在既有框架加固和高层钢框架减震等工程中应用越来越
将BRB应用到高层钢框架中时,水平地震力作用下BRB分解产生的轴力传递至框架柱中,并在柱底不断累积,造成基础与柱底之间拉力过大,从而导致基础设计的难题.因此本团队提出摇摆防屈曲支撑钢框架(RBRBSF)结构体系,该体系通过放松柱底与基础之间的拉力,使框架在侧向力作用下摇摆,同时为实现框架结构“强柱弱梁”机制,保护主要受力构件,保证节点处不出现塑性铰,在摇摆框架中设置梁端削弱截面(Reduced Beam Section,简称RBS).本文基于摇摆防屈曲支撑钢框架(RBRBSF)和防屈曲支撑钢框架(BRBSF)拟静力试验,建立试验框架数值分析模型,通过对比分析研究RBS对BRBSF和RBRBSF出铰机制的影响,并基于有限元模型进一步分析BRB核心段长度和核心段面积对RBRBSF抗震性能的影响.
试验框架为单榀一层一跨,共四榀,分别为编号BRBSF-1和BRBSF-2的防屈曲支撑钢框架以及编号为RBRBSF-1和RBRBSF-2的摇摆防屈曲支撑钢框架,其中BRBSF-1和RBRBSF-1为第一组试验框架,BRBSF-2和RBRBSF-2为第二组试验框架,试验框架构造和详细参数见参考文献[
RBRBSF有限元模型如

图1 RBRBSF有限元模型
Fig 1 The finite element model of RBRBSF
BRBSF和RBRBSF有限元模型的建立和正确性验证过程详见参考文献[
试验共设计两组不同参数RBS,第一组试验框架采用RBS-1,第二组试验框架采用RBS-2,具体RBS参数如
以BRBSF-2和RBRBSF-2有限元模型为基础,分别建立未设置RBS的防屈曲支撑钢框架(BRBSF-3)和摇摆防屈曲支撑钢框架(RBRBSF-3)有限元模型,加载制度分别与BRBSF-2和RBRBSF-2一致,并与BRBSF-2和RBRBSF-2梁柱节点处弯矩对比,梁柱节点M-θ曲线如

(a) BRBSF

(b) RBRBSF
图2 梁柱节点M-θ曲线
Fig 2 The skeleton curve of the beam column joint
如
如
为进一步研究RBS对RBRBSF影响,改变
考虑到RBS会降低梁端截面的承载能力,在试验框架设计时参考AISC358-10设计建议进行RBS的设计.通过试验表
引入防屈曲支撑(BRB)等效刚度
(1) |
(2) |
式中, k3,k2,k1分别为核心段、过渡段、连接段刚度,ABRB为BRB核心段面积,LBRB为BRB核心段长度.
以RBRBSF-2模型为基准算例,改变RBRBSF中防屈曲支撑(BRB)核心段长度LBRB和核心段面积ABRB,这相当于改变BRB的等效刚度k,研究参数改变对RBRBSF屈服荷载、承载能力和框架柱轴力的影响.BRB参数如
根据

(a) 屈服荷载
(a) Yield Force

(b) 承载力
(b) Bearing capacity
图3 屈服荷载和承载力
Fig 3 Yield force and bearing capacity
如
如

图4 延性比曲线
Fig.4 Ductility ratio curve
从理论计算结果及数值模拟结果分析
从RBRBSF工作机制角度进一步分析
如
通过分析ABRB和LBRB对RBRBSF屈服荷载和承载力的影响,建议RBRBSF-2中BRB核心段面积应小于800mm²,核心段长度应大于840mm,综合分析BRB等效刚度应取k<2.0.
文献[

(a) 第一组模型
(a) The first group of models

(b) 第二组模型
(b) The second group of models
图5 不同BRB构件RBRBSF框架柱轴力骨架曲线
Fig 5 Axial force skeleton curve in column of RBRBSF with different BRB
基于防屈曲支撑钢框架(BRBSF)与摇摆防屈曲支撑钢框架(RBRBSF)拟静力试验与数值模拟,得出以下结论:
(1) 设置梁端削弱截面(RBS)对BRBSF影响较大,合理的参数选择可以降低梁柱节点弯矩,实现塑性铰外移,但RBS参数的改变对RBRBSF影响较小.在RBRBSF设计时,若采用RBS,按照AISC358-10建议确定RBS的三个参数即可.
(2) BRB核心段面积和核心段长度对RBRBSF屈服荷载和承载能力有影响.随着BRB核心段长度增大,等效刚度减小,RBRBSF屈服荷载和承载力减小;随着BRB核心段面积增大,等效刚度增大,RBRBSF屈服荷载和承载力增大,但增长幅度随BRB等效刚度增大的幅度变缓.为保证BRB核心段面积和核心段长度对RBRBSF影响的最大化,设计时建议等效刚度应小于2.0.
(3) 虽然摇摆柱脚的设置会放松柱底与基础之间的拉力,减小框架柱轴力,但是BRB核心段面积和核心段长度的改变对RBRBSF框架柱轴力影响较小.
参考文献
Shaw A, Bouma K. Seismic retrofit of the marin county hall of justice using steel buckling-restrained braced frames. In: American Society of Civil Engineers Structures Congress 2004-Nashville, Tennessee, United States (May 22-26, 2004), 2004:1~11 [百度学术]
Eghbali M, Asadian E, Amiri G G. Seismic performance of steel frames equipped with buckling-restrained braces (BRBs) using nonlinear static and dynamic analyses. Journal of Vibro Engineering, 2017, 19(2):1131~1146 [百度学术]
Ash C, Bartoletti S. Seismic rehabilitation of an existing braced frame hospital building by direct replacement with BRBs. In: ATC and SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures. 2009:68~74 [百度学术]
吴徽,张国伟,赵健,等. 防屈曲支撑加固既有RC框架结构抗震性能研究.土木工程学报, 2013, 46(7): 37~46 [百度学术]
Wu H, Zhang G W, Zhao J, et al. Seismic performance of existing RC frame structures reinforced with buckling-restrained braces. China Civil Engineering Journal, 2013, 46(7): 37~46(in Chinese) [百度学术]
Mahrenholtz C, Lin P, Wu A, et al. Retrofit of reinforced concrete frames with buckling-restrained braces. Earthquake Engineering & Structural Dynamics, 2015, 44(1):59~78 [百度学术]
Tsai K, Hsiao P. Pseudo-dynamic test of a full-scale CFT/BRB frame—Seismic performance of buckling-restrained braces and connections. Earthquake Engineering & Structural Dynamics, 2010, 37(7):1099~1115 [百度学术]
Fahnestock L A, Ricles J M, Sause R. Experimental evaluation of a large-scale buckling-restrained braced frame. Journal of Structural Engineering, 2015, 133(9):1205~1214 [百度学术]
Zhang G W, Chen P, Zhao Z W, et al. Experimental study on seismic performance of rocking buckling-restrained brace steel frame with lift able column base. Journal of Constructional Steel Research, 2018, 143:291~306 [百度学术]
张国伟,孙祚帅,赵紫薇.基于OpenSees摇摆防屈曲支撑钢框架抗震性能分析.工程抗震与加固改造,2019,41(2):20~24(Zhang G W, Sun Z S, Zhao Z W. Seismic performance analysis of rocking buckling-restrained braced steel frame based on OpenSees. Earthquake Resistant Engineering and Retrofitting.2019,41(2):20~24 (in Chinese)) [百度学术]
陈廷国, 赵广军.钢框架延性节点塑性铰外移的机理研究.钢结构, 2014, 29(12):25~31 [百度学术]
Chen T G, Zhao G J. The mechanism research of steel frame ductility node. Steel Construction, 2010, 29(12): 25~31 (in Chinese) [百度学术]
ANSI/AISC 358-10 Prequalified connections for special and intermediate steel moment frames for seismic applications. Chicago, Illinois: American Institute of Steel Construction, 2010 [百度学术]