摘要
敏捷卫星是新一代的对地观测卫星,凭借其出色的机动性能带来了巨大的军事利益与商业利益.它最大的优势是具有快速姿态机动的能力,其研究的重点之一也正是快速姿态机动问题,需要通过优化来获得最短时间的姿态机动策略.本文围绕敏捷卫星的时间最优姿态机动问题,分别从时间最优姿态机动的优化求解和时间最优解的特性两个方面对该问题的研究现状进行了综述.)
关键词
从“天圆地方”的远古传说一直到现代诗人的“背负青天朝下看,都是人间城郭”,这些都反应了自古以来人们对俯瞰地球、一窥全貌的向往.人们期待对地球有着更为全面的观测,对自己赖以生存的这个星球有着更为深刻的了解.
随着现代科技的发展,人们通过对地观测卫星(Earth Observing Satellite)实现了这一愿望.1972年,美国率先发起了对地观测卫星项目“陆地卫星”(Landsat Program
在20世纪90年代末期,随着新一代敏捷对地观测卫星(Agile Earth Observing Satellite,AEOS

图1 敏捷卫星对地面区域目标成像
Fig. 1 Agile satellite imaging for the regional target
美国、法国等国家竞相发射了各自的敏捷卫星(

图2 国内外已发射的主要敏捷卫星
Fig. 2 Major agile satellites launched at home and abroad
目前,我国的传统对地观测卫星发展已趋于成熟,有了“资源”系列、“海洋”系列等对地观测卫星,但敏捷卫星等高性能对地观测卫星的发展相对滞后.为此,我国于2006年发起了高分辨率对地观测系统重大专
尽管如此,我国与世界发达国家仍存在较大差距.截止2018年底,国外在轨运行的对地观测卫星共有601颗,美国占据了其中的66
在我国推动高端产业发展的新时
(1)宏观层面的成像任务规划问
(2)微观层面的时间最优姿态机动问
本文围绕微观层面的时间最优姿态机动问题,从时间最优姿态机动的优化求解和时间最优解的特性两个方面对该问题的研究现状进行了介绍.
敏捷卫星时间最优姿态机动问题是一个典型的最优控制问题.该问题的实质是通过优化控制量,使得敏捷卫星从一个姿态机动到另一个姿态的时间最短.本文选取的研究对象为三轴机动的刚体敏捷卫
间接法的求解思路是通过极大值原理来间接获取问题的最优
一类解决初值敏感问题的思路就是通过辅助性办法降低初值猜测的难
另一类解决初值敏感问题的思路就是绕开打靶法从根本上予以回避.既然利用打靶法求解容易出现初值敏感困难,就有学者考虑到采用其他数值方法来对两点边值问题进行求解,他们将状态方程和协态方程进行离散,然后利用非线性规划的方法对该问题进行优化求
综上可以看出,间接法是求解时间最优姿态机动的一种可行方法,其求得的结果一旦收敛,往往具有很好的最优性.该方法的不足之处就是初值敏感问题,如果把搜索初值的过程考虑进来,大量求解时可能效果不太理想.对于需要考虑角速度约束的情况,其求解效率也会受到影响.此外,当最优解为奇异最优控制时,直接利用间接法进行求解也不太适合,需要进行一些特殊处
直接法的思路是将姿态机动问题离散成一个参数优化问题直接优化求
局部近似的直接法根据优化变量不同主要可以分为配点法(Collocation
全局近似的直接法中最常用的就是基于Lagrange插值的伪谱
除了上述典型的间接法和直接法外,还有学者提出了一些其他方案对时间最优姿态机动进行求解.Li和Bainu
研究姿态机动时间最优解的特性有助于了解最优控制的本质,提高优化求解的效率.截止目前,对于三轴机动的刚体敏捷卫星,仍然无法获得时间最优姿态机动的解析
三轴姿态机动的时间最优解通常为bang-bang控制,对bang-bang控制特性的研究主要集中在控制量的切换次
奇异最优控
由于无法以解析形式直接给出最优时间,为了工程实用方便,学者们试图以解析形式给出最优时间的范围.2010年,Flemin
时间最优姿态机动问题因为关系到敏捷卫星的工作性能而备受关注,本文综述了求解时间最优姿态机动的优化算法以及最优解的特性.这些优化算法总体可分为间接法和直接法两大类,各有优劣.最优解的bang-bang控制和奇异最优控制存在一些规律特性,姿态机动的最优时间也可以给出一个比较准确的解析范围.
展望未来,由于敏捷卫星具有出色的机动性能,可以完成很多传统卫星所无法完成的任务,其在21世纪的发展必定大放异彩.尽管目前的研究取得了一些进展,但仍存在许多未知的问题亟待解决,现列举如下:
(1) 时间最优姿态机动的解析解研究.尽管目前对时间最优姿态机动的数值求解方法很多,但每种数值方法均有其局限性,也并不能保证在所有情况下都具有很好的求解效率.如果能在解析结果的研究上取得进展,将可以极大地提高该问题的求解效率,促进自主敏捷卫星的发展,推动时间最优姿态机动在各工程领域的应用.
(2)路径约束情况下的时间最优姿态机动研究.工程实践中,有的星上载荷需要避免阳光直射,有的载荷为了通信而对其天线朝向有所限制,这些要求都构成了卫星姿态机动过程中的路径约束.为此,国外近几年已开始了对路径约束情况下的姿态机动研究,该研究对完善时间最优姿态机动问题的理论体系具有重要意义.
(3)起始和末端均为运动状态的时间最优姿态机动研究.目前对姿态机动问题的研究主要集中于起止均为静止状态的情况,也就是说起止角速度均为零,而敏捷卫星在对地观测过程中往往面对多个成像目标,倘若可以实现从运动状态到运动状态的时间最优控制,那么将可以进一步提高敏捷卫星的工作效率,带来更大的军事与商业利益.
(4)柔性敏捷卫星的时间最优姿态机动研究.本文及许多学者的研究重点集中于刚体敏捷卫星的研究,而实际中并不存在绝对的刚体,很多卫星都具有柔性部件,比如太阳能帆板等,这就导致卫星在快速机动过程中会面临振动等一系列复杂问题.因此有必要对柔性情况下的时间最优姿态机动进行研究,综合平衡机动效率与振动等多项因素.
参考文献
Woodcock C E, Allen R, Anderson M, et al. Free access to Landsat imagery. Science, 2008, 320(5879):1011~1011 [百度学术]
Chander G, Markham B L, Helder D L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 2009, 113(5):893~903 [百度学术]
Barrett E C, Grant C K. Relations between frequency distributions of cloud over the United Kingdom based on conventional observations and imagery from LANDSAT 2. Weather, 1979, 34(11):416~424 [百度学术]
Ormsby J P. The use of Landsat-3 thermal data to help differentiate land covers. Remote Sensing of Environment, 1982, 12(2):97~105 [百度学术]
Malila W A, Metzier M D, Rice D P, et al. Characterization of Landsat-4 MSS and TM digital image data. IEEE Transactions on Geoscience and Remote Sensing, 1984 (3):177~191 [百度学术]
Chander G, Markham B. Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(11):2674~2677 [百度学术]
Jones A R, Settle J J, Wyatt B K. Use of digital terrain data in the interpretation of SPOT-1 HRV multispectral imagery. International Journal of Remote Sensing, 1988, 9(4):669~682 [百度学术]
Ishiguro E, Kumar M K, Hidaka Y, et al. Use of rice response characteristics in area estimation by LANDSAT/TM and MOS-1 satellites data. Isprs Journal of Photogrammetry & Remote Sensing, 1993, 48(1):26~32 [百度学术]
Kaufman Y J, Herring D D, Ranson K J, et al. Earth observing system AM1 mission to earth. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4):1045~1055 [百度学术]
陈宜元. 中巴地球资源卫星. 航天器工程, 2002, 3(2):1~9 [百度学术]
Chen Y Y. China-Brazil earth resources satellite. Spacecraft Engineering, 2002, 3(2):1~9(in Chinese) [百度学术]
蒋兴伟. 我国海洋卫星系列的发展及其应用展望.中国航天, 2001(9):13~17 [百度学术]
Jiang X W. Development of China's marine satellite series and their application prospects. Aerospace China, 2001(9):13~17(in Chinese) [百度学术]
Feng X L, Wang K, Lou L M. Application of remotely sensed image of SPOT5 to land use change survey. Journal of Zhejiang University, 2005 [百度学术]
Lemaı̂tre M, Verfaillie G, Jouhaud F, et al. Selecting and scheduling observations of agile satellites. Aerospace Science and Technology, 2002, 6(5):367~381 [百度学术]
蔡晓晓. 敏捷小卫星姿态控制方法研究 [硕士论文]. 长沙: 国防科学技术大学, 2013 [百度学术]
Cai X X. Research on attitude control method of small agile satellite [Master Thesis]. Changsha: National University of Defense Technology, 2013(in Chinese) [百度学术]
李志亮, 李小将, 王志恒. 敏捷卫星任务规划问题研究现状与展望. 装备学院学报, 2016(1):69~75(Li Z L, Li X J, Wang Z H. Current status and prospect of agile satellite mission planning. Journal of Equipment Academy, 2016(1):69~75(in Chinese)) [百度学术]
Sande C J V D, Jong S M D, Roo A P J D. A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment. International Journal of Applied Earth Observation & Geoinformation, 2003, 4(3):217~229 [百度学术]
Gleyzes M A, Perret L, Kubik P. Pleiades system architecture and main performances. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, 39(1):537~542 [百度学术]
Levin N, Johansen K, Hacker J M, et al. A new source for high spatial resolution night time images—The EROS-B commercial satellite. Remote Sensing of Environment, 2014, 149: 1~12 [百度学术]
Martha T R, Reddy P S, Bhatt C M, et al. Debris volume estimation and monitoring of Phuktal river landslide-dammed lake in the Zanskar Himalayas, India using Cartosat-2 images. Landslides, 2017, 14(1):373~383 [百度学术]
Gómez C, Wulder M A, Montes F, et al. Modeling forest structural parameters in the Mediterranean pines of central Spain using QuickBird-2 imagery and classification and regression tree analysis (CART). Remote Sensing, 2012, 4(1):135~159 [百度学术]
Huang X, Zhang L. A multidirectional and multiscale morphological index for automatic building extraction from multispectral GeoEye-1 imagery. Photogrammetric Engineering & Remote Sensing, 2011, 77(7):721~732 [百度学术]
Immitzer M, Atzberger C, Koukal T. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote Sensing, 2012, 4(9): 2661~2693 [百度学术]
童旭东. 中国高分辨率对地观测系统重大专项建设进展. 遥感学报, 2016, 20(5):775~780 [百度学术]
Tong X D. Development of China high-resolution earth observation system. Journal of Remote Sensing, 2016, 20(5):775~780(in Chinese) [百度学术]
白照广. 高分一号卫星的技术特点. 中国航天, 2013(8):5~9 [百度学术]
Bai Z G. Technical characteristics of the Gaofen-1 satellite. Aerospace China, 2013(8):5~9(in Chinese) [百度学术]
赵迎龙, 瞭望. 高景一号商业遥感卫星成功发射. 航天器工程, 2017(26):145(Zhao Y L, Liao W. SuperView-1 commercial remote sensing satellite successfully launched. Spacecraft Engineering, 2017(26):145(in Chinese)) [百度学术]
龚燃, 刘韬. 2018年国外对地观测卫星发展综述. 国际太空, 2019(2):48~55(Gong R, Liu T. A summary of the development of foreign earth observation satellites in 2018. Space International, 2019(2):48~55(in Chinese)) [百度学术]
孙雪松. 2018年卫星产业状况报告. 卫星应用, 2018, 80(8):65~66 [百度学术]
Sun X S. State of the satellite industry report in 2018. Satellite Application, 2018, 80(8):65~66(in Chinese) [百度学术]
栾恩杰, 王崑声, 袁建华, 等. 我国卫星及应用产业发展研究.中国工程科学, 2016, 18(4):76~82 [百度学术]
Luan E J, Wang K S, Yuan J H, et al. Research on satellite application industry development in china. Strategic Study of CAE, 2016, 18(4):76~82(in Chinese)) [百度学术]
向仍湘. 敏捷卫星任务调度技术研究[硕士论文]. 长沙: 国防科学技术大学, 2010 [百度学术]
Xiang R X. Research on selecting and scheduling observations of agile satellites [Master Thesis]. Changsha: National University of Defense Technology, 2010(in Chinese) [百度学术]
Toutin T. Comparison of stereo-extracted DTM from different high-resolution sensors: SPOT-5, EROS-A, IKONOS-II, and QuickBird. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10):2121~2129 [百度学术]
张新伟, 戴君, 刘付强. 敏捷遥感卫星工作模式研究.航天器工程, 2011, 20(4):32~38 [百度学术]
Zhang X W, Dai J, Liu F Q. Research on working mode of remote sensing satellite with agile attitude control. Spacecraft Engineering, 2011, 20(4):32~38(in Chinese) [百度学术]
黄群东, 杨芳, 赵键. 敏捷卫星宽幅动态成像姿态调整技术研究.航天器工程, 2013, 22(4):17~22 [百度学术]
Huang Q D, Yang F, Zhao J. Research on attitude guidance technology for agile satellite wide regional dynamic imaging. Spacecraft Engineering, 2013, 22(4):17~22(in Chinese) [百度学术]
阮启明. 面向区域目标的成像侦察卫星调度问题研究[博士论文].长沙:国防科学技术大学, 2006(Ruan Q M. Research on photo-reconnaissance satellite scheduling problem for area targets observation[Ph.D Thesis]. Changsha: National University of Defense Technology, 2006(in Chinese))) [百度学术]
李志亮, 李小将, 孙伟. 考虑成像质量的敏捷卫星任务调度模型与算法.宇航学报, 2017, 38(6):590~597 [百度学术]
Li Z L, Li X J, Sun W. Task scheduling model and algorithm for agile satellite considering imaging quality. Journal of Astronautics, 2017, 38(6):590~597 (in Chinese) [百度学术]
李玉庆, 徐敏强, 王日新. 三轴稳定卫星点目标观测任务优化调度技术. 吉林大学学报(工学版), 2008, 38(6):1447~1451 [百度学术]
Li Y Q, Xu M Q, Wang R X. Scheduling observations of spot object of three-axis stabilized satellites. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(6):1447~1451(in Chinese) [百度学术]
邱涤珊, 郭浩, 贺川,等. 敏捷成像卫星多星密集任务调度方法. 航空学报, 2013, 34(4):882~889 [百度学术]
Qiu D S, Guo H, He C, et al. Intensive task scheduling method for multi-agile imaging satellites. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):882~889(in Chinese) [百度学术]
Habet D, Vasquez M, Vimont Y. Bounding the optimum for the problem of scheduling the photographs of an agile earth observing satellite. Computational Optimization and Applications, 2010, 47(2):307~333 [百度学术]
Cao X, Yue C, Liu M, et al. Time efficient spacecraft maneuver using constrained torque distribution. Acta Astronautica, 2016, 123:320~329 [百度学术]
叶东. 敏捷卫星姿态快速机动与稳定控制方法研究[博士论文]. 哈尔滨: 哈尔滨工业大学, 2013(Ye D. Research on fast maneuver and stabilization control for agile satellite. [Ph.D Thesis]. Harbin: Harbin Institute of Technology, 2013(in Chinese)) [百度学术]
Spiller D, Melton R G, Curti F. Inverse dynamics particle swarm optimization applied to constrained minimum-time maneuvers using reaction wheels. Aerospace Science and Technology, 2018, 75:1~12 [百度学术]
Yin M, Yang H, Baoyin H. Time-optimal reorientation of an autonomous agile earth observing satellite. In: The 27th AAS/AIAA Space Flight Mechanics Meeting, San Antonio, Texas, 2017 [百度学术]
Bilimoria K D, Wie B. Time-optimal three-axis reorientation of a rigid spacecraft. Journal of Guidance, Control, and Dynamics, 1993, 16(3):446~452 [百度学术]
印明威, 王贤宇, 李京阳,等. 航天器姿态机动的敏捷性评估. 清华大学学报(自然科学版), 2019, 59(9):720~728 [百度学术]
Yin M Wi, Wang X Y, Li J Y, et al. Assessing Spacecraft agility. Journal of Tsinghua Universiy (Science & Technology), 2019, 59(9):720~728(in Chinese) [百度学术]
Yin M, Li J, Wang X,et al. A rapid method for validation and visualization of agile earth-observation satellites scheduling. Astrodynamics, 2018, 2(4):325~337 [百度学术]
Ranieri C L, Ocampo C A. Indirect optimization of spiral trajectories. Journal of Guidance, Control, and Dynamics, 2006, 29(6):1360~1366 [百度学术]
Hargraves C R, Paris S W. Direct trajectory optimization using nonlinear programming and collocation. Journal of Guidance, Control, and Dynamics, 1987, 10(4):338~342 [百度学术]
Lewi F L, Vrabie D, Syrmos V L. Optimal control. New Jersey: John Wiley & Sons, 2012 [百度学术]
Pontryagin L S, Boltyanskii V G, Gamkrelize R V, et al. The mathematical theory of optimal processes. New York: Wiley, 1962 [百度学术]
Betts J T. Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics, 1998, 21(2):193~207 [百度学术]
李俊峰, 蒋方华.连续小推力航天器的深空探测轨道优化方法综述. 力学与实践, 2011, 33(3):1~6 [百度学术]
Li J F, Jiang F H. Survey of low-thrust trajectory optimization methods for deep space exploration. Mechanics in Engineering, 2011, 33(3):1~6(in Chinese) [百度学术]
Li J. Time-optimal three-axis reorientation of asymmetric rigid spacecraft via homotopic approach. Advances in Space Research, 2016, 57(10):2204~2217 [百度学术]
郭铁丁.深空探测小推力轨迹优化的间接法与伪谱法研究 [博士论文]. 北京:清华大学, 2012(Guo T D. Study of indirect and pseudospectral methods for low thrust trajectory optimization in deep space exploration [Ph.D Thesis]. Beijing: Tsinghua University, 2012(in Chinese)) [百度学术]
Dixon L C W, Biggs M C. The advantages of adjoint-control transformations when determining optimal trajectories by Pontryagin's maximum principle. The Aeronautical Journal, 1972, 76(735):169~174 [百度学术]
Jiang F, Baoyin H, Li J. Practical techniques for low-thrust trajectory optimization with homotopic approach. Journal of Guidance, Control, and Dynamics, 2012, 35(1):245~258 [百度学术]
Haberkorn T, Martinon P, Gergaud J. Low thrust minimum-fuel orbital transfer: a homotopic approach. Journal of Guidance, Control, and Dynamics, 2004, 27(6):1046~1060 [百度学术]
Gergaud J, Haberkorn T. Homotopy method for minimum consumption orbit transfer problem. ESAIM: Control, Optimisation and Calculus of Variations, 2006, 12(2):294~310 [百度学术]
Bertrand R, Epenoy R. New smoothing techniques for solving bang-bang optimal control problems-numerical results and statistical interpretation. Optimal Control Applications and Methods, 2002, 23(4):171~197 [百度学术]
Martell C A, Lawton J A. Adjoint variable solutions via an auxiliary optimization problem. Journal of Guidance, Control, and Dynamics, 1995, 18(6):1267~1272 [百度学术]
Seywald H, Kumar R R. Finite difference scheme for automatic costate calculation. Journal of Guidance, Control, and Dynamics, 1996, 19(1):231~239 [百度学术]
Yan H, Wu H. Initial adjoint-variable guess technique and its application in optimal orbital transfer. Journal of Guidance, Control, and Dynamics, 1999, 22(3):490~492 [百度学术]
Ilgen M R. Hybrid method for computing optimal low thrust OTV trajectories. Advances in the Astronautical Sciences, 1992, 87(2):941~958 [百度学术]
Kluever C A, Pierson B L. Optimal low-thrust earth-moon transfer with a switching function structure. Journal of Astronautical Sciences, 1994, 42(3):269~283 [百度学术]
Kluever C A, Pierson B L. Optimal low-thrust three-dimensional earth-moon trajectories. Journal of Guidance, Control, and Dynamics, 1995, 18(4): 830~837 [百度学术]
Gao Y, Kluever C. Low-thrust interplanetary orbit transfers using hybrid trajectory optimization method with multiple shooting. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Rhode Island, 2004 [百度学术]
任远, 崔平远, 栾恩杰. 利用混合法进行地球-火星小推力轨道设计. 哈尔滨工业大学学报, 2007, 39(3):359~362 [百度学术]
Ren Y, Cui P Y, Luan E J. An earth-mars low-thrust trajectory design based on hybrid method. Journal of Harbin Institute of Technology, 2007, 39(3):359~362(in Chinese) [百度学术]
Bai X, Junkins J L. New results for time-optimal three-axis reorientation of a rigid spacecraft. Journal of Guidance, Control, and Dynamics, 2009, 32(4):1071~1076 [百度学术]
Jacobson D, Gershwin S, Lele M. Computation of optimal singular controls. IEEE Transactions on Automatic Control, 1970, 15(1):67~73 [百度学术]
Enright P J, Conway B A. Discrete approximations to optimal trajectories using direct transcription and nonlinear programming. Journal of Guidance, Control, and Dynamics, 1992, 15(4):994~1002 [百度学术]
Gill P E, Murray W, Saunders M A. SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM review, 2005, 47(1):99~131 [百度学术]
Coverstonecarroll V, Williams S N. Optimal low thrust trajectories using differential inclusion concepts. Journal of the Astronautical Sciences, 1994, 42(42):379~393 [百度学术]
Hull D G. Conversion of optimal control problems into parameter optimization problems. Journal of Guidance, Control, and Dynamics, 1997, 20(1):57~60 [百度学术]
Betts J T. Optimal interplanetary orbit transfers by direct transcription. Journal of the Astronautical Sciences, 1994, 42(3):247~268 [百度学术]
Scrivener S L. Time-optimal multi-axis attitude maneuvers of rigid spacecraft using collocation and nonlinear programming[Ph.D Thesis]. Pennslvania: Pennsylvania State university, 1993 [百度学术]
Fahroo F, Ross I M. Direct trajectory optimization by a Chebyshev pseudospectral method. Journal of Guidance, Control, and Dynamics, 2002, 25(1):160~166 [百度学术]
Huntington G T, Rao A V. Optimal reconfiguration of spacecraft formations using the Gauss pseudospectral method. Journal of Guidance, Control, and Dynamics, 2008, 31(3):689~698 [百度学术]
Garg D, Patterson M A, Francolin C, et al. Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method. Computational Optimization and Applications, 2011, 49(2):335~358 [百度学术]
Benson D A, Huntington G T, Thorvaldsen T P, et al. Direct trajectory optimization and costate estimation via an orthogonal collocation method. Journal of Guidance, Control, and Dynamics, 2006, 29 (6):1435~1440 [百度学术]
Elnagar G, Kazemi M A, Razzaghi M. The pseudospectral Legendre method for discretizing optimal control problems. IEEE Transactions on Automatic Control, 1995, 40(10):1793~1796 [百度学术]
Fahroo F, Ross I M. Costate estimation by a Legendre pseudospectral method. Journal of Guidance, Control, and Dynamics, 2001, 24(2):270~277 [百度学术]
Gong Q, Ross I M, Fahroo F. Costate computation by a Chebyshev pseudospectral method. Journal of Guidance, Control, and Dynamics, 2010, 33(2):623~628 [百度学术]
Li J. Analysis of the inertially symmetric rigid spacecraft time-optimal three-axis reorientation. Optimal Control Applications and Methods, 2017, 38(1):59~74 [百度学术]
Li J, Xi X. Time-optimal reorientation of the rigid spacecraft using a pseudospectral method integrated homotopic approach. Optimal Control Applications and Methods, 2015, 36(6): 889~918 [百度学术]
Ross I M. User’s manual for DIDO: A MATLAB application package for solving optimal control problems. Sweden: Tomlab Optimization, 2004 [百度学术]
Patterson M A, Rao A V. GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Transactions on Mathematical Software, 2014, 41(1):1~37 [百度学术]
Ross I M, Gong Q, Sekhavat P. Low-thrust, high-accuracy trajectory optimization. Journal of Guidance, Control, and Dynamics, 2007, 30(4):921~933 [百度学术]
Ross I M, Fahroo F. Pseudospectral knotting methods for solving optimal controlproblems. Journal of Guidance, Control, and Dynamics, 2004, 27(3):397~405 [百度学术]
Darby C L, Hager W W, Rao A V. An hp-adaptive pseudospectral method for solving optimal control problems. Optimal Control Applications and Methods, 2011, 32(4):476~502 [百度学术]
Li F, Bainum P M. Numerical approach for solving rigid spacecraft minimum time attitude maneuvers. Journal of Guidance, Control, and Dynamics, 1990, 13(1):38~45 [百度学术]
Byers R M, Vadali S R. Quasi-closed-form solution to the time-optimal rigid spacecraft reorientation problem. Journal of Guidance, Control, and Dynamics, 1993, 16(3):453~461 [百度学术]
Meier E B, Ryson A E. Efficient algorithm for time-optimal control of a two-link manipulator. Journal of Guidance, Control, and Dynamics, 1990, 13(5):859~866 [百度学术]
Fleming A, Sekhavat P, Ross I M. Minimum-time reorientation of a rigid body. Journal of Guidance, Control, and Dynamics, 2010, 33(1):160~170 [百度学术]
Boyarko G, Romano M, Yakimenko O. Time-optimal reorientation of a spacecraft using an inverse dynamics optimization method. Journal of Guidance, Control, and Dynamics, 2011, 34(4): 1197~1208 [百度学术]
Scrivener S L, Thompson R C. Survey of time-optimal attitude maneuvers. Journal of Guidance, Control, and Dynamics, 1994, 17(2):225~233 [百度学术]
Mehrpouya M A, Fallahi S. A modified control parametrization method for the numerical solution of bang-bang optimal control problems. Journal of Vibration and Control, 2015, 21(12):2407~2415 [百度学术]
Steyn W. Near-minimum-time eigenaxis rotation maneuvers using reaction wheels. Journal of Guidance, Control, and Dynamics, 1995, 18(5):1184~1189 [百度学术]
Yin M, Wang X, Baoyin H. Time-optimal spacecraft reorientation for the observation of multiple asteroids. Open Astronomy, 2019, 28(1): 110~123 [百度学术]
Seywald H, Kumar R R. Singular control in minimum time spacecraft reorientation. Journal of Guidance, Control, and Dynamics, 1993, 16(4):686~694 [百度学术]
Goddard R H. A method of reaching extreme altitudes. Nature, 1920, 105(2652):809~811 [百度学术]
Shen H, Tsiotras P. Time-optimal control of axisymmetric rigid spacecraft using two controls. Journal of Guidance, Control, and Dynamics, 1999, 22(5):682~694 [百度学术]
Lee T, Leok M, McClamroch N H. Time optimal attitude control for a rigid body. In: 2008 American Control Conference, Washington, 2008:5210~5215 [百度学术]
印明威, 李京阳, 宝音贺西. 敏捷卫星姿态机动的奇异最优控制. 光学精密工程, 2018, 26(4):906~915 [百度学术]
Yin M W, Li J Y, Baoyin H X. Singular optimal control for three-axis reorientation of an agile satellite. Optics and Precision Engineering, 2018, 26(4):906~915(in Chinese) [百度学术]
King J T, Karpenko M. A simple approach for predicting time-optimal slew capability. Acta Astronautica, 2016, 120:159~170 [百度学术]