摘要
最优小波解调是一种常用的滚动轴承故障诊断方法,针对如何选择最优中心频率和带宽的问题,从故障振动信号的冲击性和循环平稳性出发,提出了一种基于负熵和多目标优化的复Morlet小波解调方法.利用遗传算法的泛优化能力,分别以窄带信号包络的负熵和包络谱的负熵设计两个目标函数,通过非支配排序和拥挤距离排序,结合选择、交叉和变异遗传操作对复Morlet小波参数进行优化,自适应地确定富含故障信息的最优共振频带进行包络解调.试验表明,该方法通过多目标优化可以统一表征轴承故障的冲击性和循环平稳性,可以准确识别轮对轴承的局部故障.
2019-07-02收到第1稿,2020-03-13收到修改稿.
轮对轴承是列车走行部中的关键部件,承担着支承、传动、运动转换等重要功能.复杂激励环境很容易诱发轮对轴承产生早期故障,而高负荷工作条件使早期故障快速发展,轴承健康状态的恶化会严重影响列车的稳定性与安全性,甚至会导致失稳、燃轴、切轴等严重事
基于内积变换原理的小波分析理论是处理非平稳信号的有力工具,常被用于提取旋转机械振动信号的故障特
本文在文献[
假设为一平方可积函数且满足容许性条件,通过将其进行伸缩和平移可以得到小波基函数:
(1) |
其中,a为尺度参数,b为定位参数,为归一化常数,用来保证变换的能量守恒,即.则一个能量有限的函数的CWT可以定义为以函数族为积分核的积分变换:
(2) |
其中,表示的共轭.由傅里叶变换的尺度性质,可以进一步表示
(3) |
其中,和分别为和的傅里叶变换,表示傅里叶逆变换.表明,从频域理解,小波函数有滤波器的作用,不同尺度上的CWT相当于一个带通滤波器组.
内积变换可视为两个信号之间关系紧密度或相似性的一种度量.因此,在机械系统的故障诊断中,当所用的小波函数与动态信号中的故障特征更匹配时,才能得到更好的分析效果.复Morlet小波在时域具有指数衰减的震荡形式,与轴承局部缺陷产生的共振响应十分相似,常被用于滚动轴承的故障特征提
(4) |
其傅里叶变换为:
(5) |
其中,为中心频率,为带宽,选定一组参数,,复Morlet小波的时域波形及频域形状如
(6) |

(a) 时域波形
(a) Time waveform

(b) 频域窗口
(b) Frequency shape
图1 复Morlet小波的时域波形和频域形状
Fig.1 Time waveform and frequency shape of complex Morlet wavelet
进一步取
(7) |
即为滤出信号的平方包络.式中Re和Im分别表示实部和虚部.
为了更准确地刻画轴承故障的重复性冲击响应,文献[
(8) |
相应地,包络谱的负熵定义为
(9) |
基于熵的不确定原理,还可以得到平均负熵
(10) |
由可知,平均负熵可以统一表征冲击性和循环平稳性,然而受和相同的权重限制,直接计算窄带信号的平均负熵难以克服冲击性噪声或循环平稳性噪声的影
一个同时具有N个目标的MOO问题可以表示为:
, |
(11) |
一般情况下,各个目标之间可能是相互矛盾的,一个目标的增大可能会导致其他目标的减小.因而造成的最优解并不是唯一的,而是一个由多个非支配解构成的解集,如果的两个解和满足
(12) |
即认为支配,记为.所有非支配解的集合称为Pareto解,Pareto解在空间形成的曲线或曲面称为Pareto前沿.
遗传算法(GA)是模仿自然界生物进化机制发展起来的一种随机搜索和优化方法,被广泛应用于小波滤波器的参数优化问

图2 NSGA-II算法流程图
Fig. 2 Flowchart of the NSGA-II algorithm
使用NSGA-II优化复Morlet小波参数的简要过程如下:
(1) 初始化种群.随机产生初始种群,的取值范围为[0.02Fs, 0.4Fs],带宽σ的取值范围为[0.01Fs, 0.2Fs],Fs为振动信号的采样频率.种群的规模pop一般由经验确定,本文设为100.
(2) 初始种群排序.以包络的负熵和包络谱的负熵为两个独立的目标函数计算初始种群的适应度值,通过快速非支配排序和拥挤距离排序构造Pareto解
(3) 开始迭代.首先,应用二元锦标赛方法从当代种群中选择一定比例的优良个体作为父代生成下一代.然后,进行遗传操作,通过交叉和变异产生新的种群,并将父代和子代种群合并.最后,同样用基于和两组适应度值进行排序构造新种群的Pareto解.
(4) 停止迭代.本文选择最大遗传代数即为终止原则,设定最大遗传代数gen为100.
(5) 输出最优解.计算Pareto解的平均负熵,以最大值选择最优解.
为了直观地验证本文方法在提取重复性故障冲击时的有效性,首先应用美国NSFI/UCR智能维护系统中心的加速寿命实验数

图3 实验台结构图
Fig. 3 Structure of the test rig

图4 轴承1振动加速度的峭度趋势图
Fig. 4 Kurtosis for the whole life cycle of Bearing 1
本文选取第80-120 h区间内采集的240组数据,依次应用基于负熵的多目标优化方法构造最优复Morlet小波滤波器,对各组振动信号进行带通滤波,并将得到的最优小波滤波器及其滤出信号的包络谱绘制到

(a) 最优小波滤波器
(a) Optimal wavelet filters

(b) 包络谱
(b) Envelope spectrums
图5 本文方法诊断结果
Fig. 5 Results of the proposed method
为进一步验证本文方法的有效性和优越性,采用如

图6 轮对轴承跑合实验台
Fig. 6 Test rig for wheel-set bearings

(a) 时域波形
(a) Time waveform

(b) 频谱
(b) Frequency spectrum

(c) 包络谱
(c) Envelope spectrum
图7 外圈故障信号
Fig. 7 Outer race fault signal
应用本文方法对该信号进行多目标最优小波解调,多目标优化结果如

(a) Pareto前沿
(a) Pareto front

(b) Pareto解与最优解
(b) Pareto solutions and the optimal one
图8 多目标优化结果
Fig. 8 Results of MOO

(a) 窄带滤出信号
(a) Filtered signal

(b) 包络谱
(b) Envelope spectrum
图9 本文方法诊断结果
Fig. 9 Results of the proposed method
(1) 本文从轴承故障信号的冲击性和循环平稳性出发,提出了基于负熵的多目标最优小波解调方法,通过试验表明,本文方法可以成功诊断轮对轴承的局部故障.
(2) 包络的负熵可以表征冲击性,包络谱的负熵可以表征循环平稳性,Pareto解的平均负熵可以在噪声干扰下有效统一表征重复性故障冲击的这两种特性.
(3) 现阶段的多指标优化算法受其计算复杂度的限制相对于单目标优化在计算效率方面还有待提升,如何提高其在故障诊断中的适用性应在今后研究中充分考虑.

参考文献
邵毅敏,涂文兵,周晓君,等.基于嵌入式多参量传感器的智能轴承.中国机械工程,2010,21(21):2527~2531
Shao Y M,Tu W B,Zhou X J,et al. Smart bearing based on embedded multi-parameter sensors. China Mechanical Engineering,2010,21(21):2527~2531 (in Chinese)
刘韬,陈进,董广明.基于频带熵的滚动轴承故障诊断研究.振动与冲击,2014,33(1):77~80
Liu T,Chen J,Dong G M. Rolling element bearing fault diagnosis based on frequency band entropy. Journal of Vibration and Shock,2014,33(1):77~80 (in Chinese)
李川,朱荣荣,杨帅.基于多指标模糊融合的滚动轴承诊断的最优频带解调方法.机械工程学报,2015,51(7):107~114
Li C,Zhu R R,Yang S. Optimal frequency band demodulation for fault diagnosis of rolling element bearings based on fuzzy fusion of multiple criteria. Journal of Mechanical Engineering,2015,51(7):107~114 (in Chinese)
Obuchowski J,Wyłomańska A,Zimroz R. Selection of informative frequency band in local damage detection in rotating machinery. Mechanical Systems and Signal Processing,2014,48(1-2):138~152
Wodecki J,Michalak A,Zimroz R. Optimal filter design with progressive genetic algorithm for local damage detection in rolling bearings. Mechanical Systems and Signal Processing,2018,102:102~116
Yan R,Gao R X,Chen X. Wavelets for fault diagnosis of rotary machines: A review with applications. Signal processing,2014,96:1~15
Nikolaou N G,Antoniadis I A. Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted Morlet wavelets. Mechanical Systems and Signal Processing,2002,16(4):677~694
梁霖,徐光华.基于自适应复平移Morlet小波的轴承包络解调分析方法.机械工程学报,2006,42(10):151~155
Liang L,Xu G H. Optimal envelope demodulation method based on adaptive complex shifted Morlet wavelet in bearing diagnosis. Journal of Mechanical Engineering,2006,42(10):151~155 (in Chinese)
Bozchalooi I S,Liang M. A joint resonance frequency estimation and in-band noise reduction method for enhancing the detectability of bearing fault signals. Mechanical Systems and Signal Processing,2008,22(4):915~933
Su W,Wang F,Zhu H, et al. Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement. Mechanical Systems and Signal Processing,2010,24(5):1458~1472
Gryllias K C,Antoniadis I. A peak energy criterion (pe) for the selection of resonance bands in complex shifted Morlet wavelet (CSMW) based demodulation of defective rolling element bearings vibration response. International Journal of Wavelets,Multiresolution and Information Processing,2009,7(4):387~410
Tse P W,Wang D. The automatic selection of an optimal wavelet filter and its enhancement by the new sparsogram for bearing fault detection. Part 2 of the two related manuscripts that have a joint title as "Two automatic vibration-based fault diagnostic methods using the novel sparsity measurement:Parts 1 and 2". Mechanical Systems and Signal Processing,2013,40:520~544
张龙,熊国良,黄文艺.复小波共振解调频带优化方法和新指标.机械工程学报,2015,51(3):129~138
Zhang L,Xiong G L,Huang W Y. New procedure and index for the parameter optimization of complex wavelet based on resonance demodulation. Journal of Mechanical Engineering,2015,51(3):129~138 (in Chinese)
Zhang C L,Li B,Chen B Q, et al. Weak fault signature extraction of rotating machinery using flexible analytic wavelet transform. Mechanical Systems and Signal Processing,2015,64:162~187
Gu X,Yang S,Liu Y, et al. Rolling element bearing faults diagnosis based on kurtogram and frequency domain correlated kurtosis. Measurement Science and Technology,2016,27(12):125019
Antoni J. The infogram: Entropic evidence of the signature of repetitive transients. Mechanical Systems and Signal Processing,2016,74:73~94
顾晓辉,杨绍普,刘永强,等.一种改进的峭度图方法及其在复杂干扰下轴承故障诊断中的应用.振动与冲击,2017,36(23): 187~193
Gu X H,Yang S P,Liu Y Q,et al. An improved kurtogram method and its application in fault diagnosis of rolling element bearings under complex interferences. Journal of Vibration and Shock,2017,36(23): 187~193 (in Chinese)
Deb K,Pratap A,Agarwal S,et al. A fast and elitist multiobjective genetic algorithm:NSGA-II. IEEE Transactions on Evolutionary Computation,2002,6(2):182~197
余瑶,文浩,陈提.中心刚体-柔性梁应变反馈多目标优化控制.动力学与控制学报,2017,15(4):356~362
Yu Y,Wen H,Chen T. Multi-objective optimal control of a flexible hub-beam with strain feedback. Journal of Dynamics and Control,2017,15(4):356~362 (in Chinese)
Lee J,Qiu H,Yu G,et al. Bearing data set from IMS of university of Cincinnati and NASA ames prognostics data repository. http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository