摘要
本文主要研究隔振对象重量变化对一类准零刚度隔振器隔振性能的影响,并给出了新的研究结果.文中使用欧拉屈曲梁构建负刚度调节结构并设计了隔振系统的平衡位置可调机构.假设系统有轻微的过载和超载,推导了系统的动力学方程并进行求解,定义了非线性隔振系统的力传递率及位移传递率来评价系统的隔振性能.对线性隔振系统,超载会让隔振频率略微降低,共振放大峰略微增大.对于准零刚度隔振系统,力传递率和线性系统类似,但是对于位移传递率,过载会导致系统固有频率和共振放大峰均升高,反而不利于隔振.研究结果可以对此类隔振系统的使用场合以及对过载和轻载的选择有工程指导意义.
2019-09-06收到第1稿, 2019-11-12 收到修改稿.
刚度和阻尼对被动隔振器来说是最基本的两个参数,对于由刚度和阻尼组成的单自由度隔振系统,刚度决定着固有频率,阻尼则控制着共振放大倍数.在工程应用时,刚度和阻尼都要选择的合适,刚度太大固有频率过大导致隔振效果降低,而刚度过小则承载能力缺失;阻尼太大会造成高频振动抑制效果变差,而阻尼太小则会引起较大的共振放大倍数.
理想的被动隔振器应在共振区提供大阻尼,高频区提供小阻尼;在静承载时刚度大,在振动时又能保持在小刚度.近十年来,很多学者在着手解决被动隔振中的矛盾,这其中,“准零刚度”隔振系统尤为热门.该隔振系统采取正负刚度并联的方式,使系统在平衡位置最低可以获得零刚度的特性,之所以称之为“准零刚度”,是因为其零刚度区间在理论上只存在一点,偏离平衡位置后刚度便会大于零.Li
然而,大多数文献的焦点都集中在如何构建负刚度机构以获取超低频隔振性能,而忽略了系统参数的影响.如上文提到的,准零刚度隔振系统的零刚度点理论上只存在于一点,考虑到系统中存在的摩擦等因素,要使得隔振对象平衡在零刚度点异常困难,而且隔振对象的重量往往无法调节.在进行工程应用时,必须考虑此类问题.Sha
本文的落脚点定在隔振对象重量对准零刚度隔振系统的影响上,考虑隔振对象的重量相对于理想重量变化±10%对系统隔振性能的影响.通过采用力传递率和位移传递率的指标,来评估隔振性能的变化,发现了完全不同于线性系统的现象.为此类隔振系统的工程应用提供了有益的指导.
在工程应用中,隔振器的许用负载是一个非常重要的设计参数,隔振器承载的重量必须在许用负载范围内.否则可能会导致隔振器受损或隔振性能恶化.定义隔振器性能最优时的载荷为额定载荷;当实际载荷大于或小于额定载荷时,隔振系统为过载和轻载.以超载情况为例,线性隔振器模型如

图1 线性隔振系统的过载示意图
Fig.1 Model of a linear isolator and that with overload
本文采用欧拉屈曲梁的方式获取负刚度进而构建准零刚度系统,隔振系统模型如

图2 准零刚度隔振系统的过载示意图
Fig.2 Model of a quasi-zero stiffness isolator and that with overload
考虑轻载和过载情况,系统的动力学方程由
(1) |
(2) |
其中 为立方刚度系数,其表达形式为:
(3) |
(4) |
使用谐波平衡法求解方程(4),其稳态主响应的解可设为:
(5) |
将
(6) |
不同激励条件下的准零刚度隔振系统的响应曲线由
(7) |
(8) |
力激励下的响应由
(9) |
取得最大响应值时对应的频率为
(10) |
同样可以求得基础激励下系统的最大响应以及对应的频率
(11) |
(12) |
为比较方便,定义等效线性系统为去除负刚度调节机构之后的隔振系统,对等效线性隔振系统的要求是在相同载重下,其静变形和准零刚度隔振系统保持一致.对应的响应为:
(13) |
对隔振器性能进行评价的最重要指标之一就是传递率,线性系统传递率再次毋庸赘述,对于准零刚度隔振系统,各传递率定义为:
准零刚度隔振系统的力传递率可以写成:
(14) |
其中为准零刚度隔振系统的稳态响应幅值.
准零刚度隔振系统的相对位移传递率为:
(15) |
准零刚度隔振系统的绝对位移传递率为:
(16) |
隔振系统重量对准零刚度隔振系统的影响见

图3 重量变化对隔振系统力传递率影响(‘o’ 准零刚度共振峰,‘*’线性刚度共振峰)
Fig.3 Effects of load imperfection on the force transmissibility of the QZS and the equivalent linear isolator

图4 重量变化对隔振系统相对位移传递率影响(‘o’ 准零刚度共振峰,‘*’线性刚度共振峰)
Fig.4 Effects of load imperfection on the relative displacement transmissibility of the QZS and the equivalent linear isolator

图5 重量变化对隔振系统绝对位移传递率影响(‘o’ 准零刚度共振峰,‘*’线性刚度共振峰)
Fig.5 Effects of load imperfection on the absolute displacement transmissibility of the QZS and the equivalent linear isolator
对于位移传递率,如
本文主要对隔振对象重量的变化对准零刚度隔振器隔振性能的影响进行了研究.假设系统有轻微的过载和超载,推导了系统的动力学方程并进行了求解,定义了力传递率以及位移传递率来评价隔振系统的隔振性能.研究结果表明:
1)对于力传递率,隔振对象重量变化对准零刚度隔振系统的影响和线性系统类似,隔振对象重量增大导致共振峰变大但固有频率降低;
2)对于位移传递率,隔振对象重量增大反而会导致准零刚度隔振系统的共振峰和固有频率均增大,这和线性系统显著不同;
3)准零刚度隔振系统用于隔离基础振动,轻载还可以让跳变线性消失,这也对隔振有利.
参 考 文 献
Liu C C, Jing X J, Daley S, et al. Recent advances in micro-vibration isolation, Mechanical Systems and Signal Processing, 2015, (56-57):55~80 [百度学术]
陆泽琦,陈立群.非线性被动隔振的若干进展.力学学报,2017,49(3):550~564 [百度学术]
Lu Z Q, Chen L Q. Some recent progresses in nonlinear passive isolations of vibrations. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3):550~564 (in Chinese [百度学术]
Carrella A. Passive vibration isolation isolators with high-static-low-dynamic-stiffness[Ph.D Thesis]. Southampton: University of Southampton,2008 [百度学术]
Carrella A, Brennan M J, Kovacic I, et al. On the force transmissibility of a vibration isolator with quasi-zero-stiffness. Journal of Sound and Vibration, 2009, 322:707~717 [百度学术]
Kovacic I, Brennan M J, Waters T P. A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. Journal of Sound and Vibration, 2008, 315:700~711 [百度学术]
Kovacic I, Brennan M J, Lineton B. Effect of a static force on the dynamic behavior of a harmonically excited quasi-zero stiffness system. Journal of Sound and Vibration, 2009, 325:870~883 [百度学术]
Kovacic I, Brennan M J, Lineton B. On the resonance response of an asymmetric Duffing oscillator. International Journal of Non-Linear Mechanics, 2008, 43:858~867 [百度学术]
Platus D. Negative-stiffness-mechanism vibration isolation systems. In: Proceedings of the SPIE’s International Symposium on Vibration Control in Microelectronics, Optics and Metrology, 1991 [百度学术]
Liu X T, Huang X C, Hua H X. On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. Journal of Sound and Vibration,2013, 332:3359~3376 [百度学术]
Huang X C, Liu X T, Sun J Y, et al. Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: A theoretical and experimental study. Journal of Sound and Vibration, 2014, 333 :1132~1148 [百度学术]
Arrieta A F, Mattioni F, Neild S A,et al. Nonlinear dynamics of a bi-stable composite laminate plate with applications to adaptive structures. In: The 2nd European Conference for Aero-Space Sciences, 2007 [百度学术]
Shaw A D, Neild S A, Wagg D J, et al. A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation. Journal of Sound and Vibration. 2013, 332(24): 6265~6275 [百度学术]
Lu Z Q, Yang T J, Brennan M J, et al. Experimental investigation of a two-stage nonlinear vibration isolation system with high-static-low-dynamic stiffness. Journal of Applied Mechanics, 2017, 84:021001-1 [百度学术]
彭志科,郎自强,孟光,等.一类非线性隔振器振动传递特性分析.动力学与控制学报,2011,9(4):314~320 [百度学术]
Peng Z K, Lang Z Q, Meng G, et al. Analysis on transmissibility for a class of nonlinear vibration isolators. Journal of Dynamics and Control, 2011, 9(4):314~320(in Chinese) [百度学术]
Sun X T, Jing X J, Xu Ji, et al. Vibration isolation via a scissor-like structured platform. Journal of Sound and Vibration, 2014, 333(9) :2404~2420 [百度学术]
Zhou N, Liu K. A tunable high-static-low-dynamic stiffness vibration isolator. Journal of Sound and Vibration, 2010, 329(9):1254~1273 [百度学术]
Wu W J, Chen X D, Shan Y H. Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness. Journal of Sound Vibration, 2014, 333(13): 2958~2970 [百度学术]
Xu D L,Yu Q P, Zhou J X,et al. Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. Journal of Sound and Vibration, 2013, 332(14): 3377~3389 [百度学术]
Robertson W S, Kidner M R F, Cazzolato B S, et al. Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation. Journal of Sound and Vibration, 2009,326(1-2):88~103 [百度学术]
Wang X L, Zhou J X, Xu D L, et al. Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness. Nonlinear Dynamics, 2017, 87:633~646 [百度学术]
Zhou J X, Xiao Q Y, Xu D L, et al. A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform. Journal of Sound and Vibration, 2017,394: 59~74 [百度学术]
Wang Y, Li S M, Neild S A, et al. Comparison of the dynamic performance of nonlinear one and two degree-of-freedom vibration isolators with quasi-zero stiffness. Nonlinear Dynamics, 2017,88:635~654 [百度学术]
Shaw A D, Neild S A, Friswell M I. Relieving the effect of static load errors in nonlinear vibration isolation mounts through stiffness asymmetries. Journal of Sound and Vibration, 2015, 339:84~98 [百度学术]
Abolfathi A, Brennan M J, Waters T P, et al. On the effects of mistuning a force-excited system containing a quasi-zero-stiffness vibration isolator. Journal of Vibration and Acoustics, 2015, 137(4), 044502 [百度学术]
Wang K, Zhou J, Xu D. Sensitivity analysis of parametric errors on the performance of a torsion quasi-zero-stiffness vibration isolator. International Journal of Mechanical Sciences, 2017, 134, 336~346 [百度学术]