摘要
运用随机平均法研究了宽带噪声激励下带有分数阶P
分数阶微积分理论及其应用的研究在过去的几十年中得到了广泛的开
目前,已有的分数阶控制器如:CRONE控制
目前,对分数阶控制器的研究大都集中在白噪声激励情形.如:李伟
随机平均法是用扩散的马尔柯夫过程来近似响应.近年来,随机平均法被扩展到研究具有分数阶控制的非线性随机动力学系
考察宽带噪声作用下的强非线性振子,其运动方程为:
(1) |
其中,分别表示广义位移和广义速度,ε是正小参数;是弱非线性阻尼系数;g(X)是线性或非线性回复力;是随机力的振幅;是分数阶P
(2) |
Wi(t)为宽带噪声激励,其有理谱密度
(3) |
ξi ,ωi , Di为常数.
当ε=0时,系统(1)退化为非线性保守振子
(4) |
系统的总能量H为
(5) |
式中
(6) |
表示为系统的势能.假设相对于x对称,且在x=0处取得最小值,则系统(4)存在一族周期解
(7) |
式中
(8) |
(9) |
这里,和称为广义谐和函数;为位移的幅值; 为振子的瞬时频率;为振子的初相位角.
将展开为Fourier级数,得
(10) |
可近似为
(11) |
式中
(12) |
α0, ω0为常数.利用
由于ε为小量,系统(1)的解在平衡点附近有周期解,表示为
(13) |
式中
(14) |
这里的A(t), Θ(t), Φ(t), Γ(t) 都是随机过程.
将方程(13)代入系统方程(1),可解得关于A, Θ 和Γ 的随机微分方程
(15) |
其中
(16) |
由方程(15)可知,A(t)和Γ(t)为慢变量,Θ(t)为快变量.当τ 较小时,存在如下近似关系:
,, |
, | (17) |
应用方程(13)和(17),可得如下近似关系:
(18) |
根据广义谐波平衡技术,u(t)可解耦为幅值依赖的等效拟线性阻尼力和拟线性回复力
(19) |
其中
(20) |
(21) |
εC(A)和εK(A)的详细计算过程见附录A.
将方程(19)代入系统方程(1),得到与系统方程(1)等价的系统
(22) |
与系统(22)相应的能量为
(23) |
相应地,方程(15)可表述为
(24) |
其中
(25) |
基于Khasminskii极限定
(26) |
其中平均漂移和扩散系数分别为
(27) |
式中表示对作平均
(28) |
(29) |
表示系统激励的相关函数,即
(30) |
现将展开成Fourier级数
(31) |
(32) |
与伊藤随机微分方程相应的FPK方程
(33) |
这里是关于幅值的转移概率密度,平均FPK方程的初始条件为
(34) |
相应的边界条件为
,当 | (35) |
,当 | (36) |
在上述边界条件下,方程(32)具有如下形式的平稳解
(37) |
其中C0为归一化常数.
相应地,由可以得到关于广义位移和速度的联合概率密度
(38) |
这里是的反函数.
考虑宽带噪声激励下带有分数阶P
(39) |
其中β1, β2, ω0, α0为常数.
于是,与系统(39)等效的非线性随机系统为
(40) |
系统(39)的能量H为
(41) |
系统(40)对应的平均伊藤方程形如
方程(40)的FPK方程可由(33)式求得,稳态概率密度函数可由

图1 未控系统关于广义位移与速度的联合概率密度. 其他参数为β1=0.01, β2=0.02, ω0=1.0, α0=1.0, ω1=ω2=ω3=5.0, ξ1 =ξ2 =ξ3 =0.5,εk0=εk1 =εk2 =0.0, D1=D2=0.2, D3=0.1
Fig.1 Joint probability density of generalized displacement and velocity of uncontrolled system. The other parameters are β1=0.01, β2=0.02, ω0=1.0, α0=1.0,ω1=ω2=ω3=5.0, ξ1 =ξ2 =ξ3 =0.5, εk0=εk1=0.0,εk2=0.0, D1=D2= 0.2, D3=0.1

图2 λ=μ=0.35, εk0=εk2=-0.1, εk1=0.1时受控系统关于广义位移与速度的联合概率密度. 其他参数同图1
Fig.2 Joint probability density of generalized displacement and velocity of controlled system with λ=μ=0.35 and εk0=εk2=-0.1, εk1=0.1. The other parameters are the same as those in Fig.1
另外,本文还分别考察了宽带激励参数ξi和ω,i以及激励强度Di变化时本文所提方法的适用性,以及分数阶P

图3 ξi =0.3时未控系统关于广义位移与速度的联合概率密度.其他参数同图1
Fig.3 Joint probability density of generalized displacement and velocity of uncontrolled system with ξi=0.3. The other parameters are the same as those in Fig.1

图4 ξi =0.3时受控系统关于广义位移与速度的联合概率密度.其他参数为同图2
Fig.4 Joint probability density of generalized displacement and velocity of controlled system with ξi=0.3. The other parameters are the same as those in Fig.2

图5 ωi=2.5时未控系统关于广义位移与速度的联合概率密度.系统其他参数同图1.
Fig.5 Joint probability density of generalized displacement and velocity of uncontrolled system with ωi=2.5. The other parameters are the same as those in Fig.1

图6 ωi=2.5受控系统关于广义位移与速度的联合概率密度. 其他参数同图2.
Fig.6 Joint probability density of generalized displacement and velocity of controlled system with ωi=2.5. The other parameters are the same as those in Fig.2

图7 D1=D2=0.4, D3=0.2时未控系统关于广义位移与速度的联合概率密度. 系统其他参数同图1
Fig.7 Joint probability density of generalized displacement and velocity of uncontrolled system with D1=D2=0.4, D3=0.2. The other parameters are the same as those in Fig.1

图8 D1=D2=0.4, D3=0.2时受控系统关于广义位移与速度的联合概率密度. 系统其他参数同图2
Fig.8 Joint probability density of generalized displacement and velocity of controlled system with D1=D2=0.4, D3=0.2. The other parameters are the same as those in Fig.2
本文运用随机平均法研究了基于分数阶P
参考文献
Tong D K,Wang R H.Analysis of the flow of non-Newtonian viscoelastic fluids in fractal reservoir with the fractional derivative.Science in China Series G Physics Mechanics & Astronomy, 2004, 47(4): 424~441 [百度学术]
Yu S W, Huang T Z, Liu X Y, et al. Information measures based on fractional calculus. Information Processing Letters, 2012, 112 (23): 916~921 [百度学术]
Ionescu C, Lopes A, Copot D, et al. The role of fractional calculus in modeling biological phenomena: A review. Communications in Nonlinear Science and Numerical Simulation, 2017, 51: 141~159 [百度学术]
Clara M I, James F K. Fractional calculus for respiratory mechanics: Power law impedance, viscoelasticity, and tissue heterogeneity. Chaos, Solitons & Fractals, 2017, 102: 433~440 [百度学术]
Zhao D Z, Pan X Q, Luo M K. A new framework for multivariate general conformable fractional calculus and potential applications. Physica A: Statistical Mechanics and its Applications, 2018, 510: 271~280 [百度学术]
Tarasov v E, Tarasova V V. Macroeconomic models with long dynamic memory: Fractional calculus approach. Applied Mathematics and Computation, 2018, 338: 466~486 [百度学术]
Zhu W Q, Ying Z G. Optimal nonlinear feedback control of quasi Hamiltonian systems. Science in China Series A: Mathematics, 1999, 42: 1213~1219 [百度学术]
Zhu W Q, Ying Z G, Soong T T. An optimal nonlinear feedback control strategy for stochastically excited structural systems. Nonlinear Dynamics, 2001, 24: 31~51 [百度学术]
Zhu W Q, Huang Z L, Yang Y Q. Stochastic averaging of quasi integrable Hamiltonian systems. Journal of Applied Mechanics. 1997, 64: 975~984 [百度学术]
Huang Z L, Zhu W Q. Stochastic averaging of quasi-integrable Hamiltonian systems under bounded noise excitations. Probabilistic Engineering Mechanics, 2004, 19(3): 219~228 [百度学术]
Yong J M, Zhou X Y. Stochastic Control, Hamiltonian Systems and HJB Equations. New York: Springer, 1999 [百度学术]
Feng C S, Wu Y J, Zhu W Q. Response of Duffing system with delayed feedback control under combined harmonic and real noise excitations. Communication in Nonlinear Science and Numerical Simulation, 2009, 14: 2542~2250 [百度学术]
Feng C S, Liu R. Response of Duffing system with delayed feedback control under combined harmonic and real noise excitations. Archive of Applied Mechanics, 2012, 82(12): 1753~1761 [百度学术]
Xu Y, Ma S, Zhang H. Hopf bifurcation control for stochastic dynamical system with nonlinear random feedback method. Nonlinear Dynamics, 2011, 65(1): 77~84 [百度学术]
Oustaloup A, Sabatier J, Lanusse P. From fractal robustness to CRONE control. Fractional Calculus and Applied Analysis, 1999, 2: 1~30 [百度学术]
Podlubny I. Fractional-order systems and P
Lurie B J. Three-parameter tunable tilt-integral-derivative controller. U.S. Patent Documents, 2004, 11(2): 125~142 [百度学术]
汪纪锋, 李元凯. 分数阶P(ID
Chen Y Q, Moore K L. Discretization schemes for fractional-order differentiators and integrators. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2002, 49(3): 363~367 [百度学术]
Chen L C, Zhao T L, Li W, et al. Bifurcation control of bounded noise excited Duffing oscillator by a weakly fractional-order PID feedback controller. Nonlinear Dynamics, 2016, 83(1-2): 529~539 [百度学术]
Grigoriu M. Control of time delay linear systems with Gaussian white noise. Probabilistic Engineering Mechanics, 1997, 12: 89~96 [百度学术]
Shah P, Agashe S. Review of fractional PID controller. Mechatronics, 2016, 38: 29~41 [百度学术]
Chen Z H, Yuan X H, Ji B, et al. Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II. Energy Conversion and Management, 2014, 84: 390~404 [百度学术]
Zamani A, Barakati S M, Yousofi-Darmian S. Design of a fractional order PID controller using GBMO algorithm for load-frequency control with governor saturation consideration. ISA Transactions, 2016, 64:56~66 [百度学术]
Ates A, Yeroglu C. Optimal fractional order PID design via Tabu search based algorithm. ISA Transactions, 2016, 60: 109~118 [百度学术]
Chen N, Chen Y. On fractional control method for four-wheel-steering vehicle. Science in China Series E: Technological Sciences, 2009, 52(3): 603~609 [百度学术]
Xu Y H, Zhou J Z, Xue X M, et al. An adaptively fast fuzzy fractional order PID control for pumped storage hydro unit using improved gravitational search algorithm. Energy Conversion and Management, 2016, 111: 67~78 [百度学术]
Nucera F, McFarland D M, Bergman L A, et al. Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: Computational results. Journal of Sound and Vibration, 2010, 329:2973~2994 [百度学术]
Ates A,Yeroglu C. Optimal fractional order PID design via Tabu Search based algorithm. ISA Transactions, 2016, 60: 109~118 [百度学术]
Zhong G, Deng H, Li J. Chatting-free variable structure controller design via fractional calculus approach and its application. Nonlinear Dynamics, 2015, 81(1): 679~694 [百度学术]
Li W, Chen L C, Zhao J F, et al. Reliability estimation of stochastic dynamical systems with fractional order PID controller. International Journal of Structural Stability and Dynamics, 2018, (18): 1850083-1 [百度学术]
Chen L C, Liang X, Zhu W Q, et al. Stochastic averaging technique for SDOF strongly nonlinear systems with delayed feedback fractional-order PD controller. Science in China Series E: Technological Sciences, 2019, 62: 287~297 [百度学术]
Chen L C, Zhao T L, Li W, et al. Bifurcation control of bounded noise excited Duffing oscillator by a weakly fractional-order P
Li W, Chen L C, Zhao J F, et al. Reliability estimation of stochastic dynamical systems with fractional order PID controller. International Journal of Structural Stability and Dynamics, 2018, 18(6): 1850083 [百度学术]
Huang Z L, Zhu W Q, Suzuki Y. Stochastic averaging of strongly nonlinear oscillators under combined harmonic and white noise excitations. Journal of Sound and Vibration, 2000, 238(2): 233~256 [百度学术]
Khasminskii R Z. On the averaging principle for Itô stochastic differential equations. Kibernetka, 1986, 3: 260~279 [百度学术]