摘要
研究了状态时滞反馈与多频混合激励联合作用下Duffing振子模型的非线性动力学.通过讨论特征方程根的分布情况,给出了时滞系统Hopf分岔条件,得到时滞量和反馈增益的分岔曲线,揭示了系统稳态解的共存与动力学转迁方式.结合数值算例,揭示系统在不同参数条件下的快慢动力学行为.结果表明,时滞量及其反馈增益可以显著影响系统的多尺度效应,调谐多频激励幅值亦可以改变快慢变流形的动态特性,从而使得Duffing振子产生不同振荡模式下的复杂动力学行为.
各种实际的非线性问题中往往涉及时滞的影
许多重要工程实际问题中的复杂振动模式还往往需要考虑不同形式的激励,如周期外激、参数激励以及混合激励.激励因素对单自由度或多自由度非线性系统的非线性振动、分岔和混沌动力学行为将会产生显著影响.例如,张伟
含时滞反馈的Duffing振子可用于描述多种工程系统,具有非常广泛的应用,许多力学与数学工作者都对此做过深入研
本文在上述结果的研究基础上, 考虑线性时滞位移反馈与多频激励联合作用的负刚度Duffing振子,
(1) |
其中为时滞量,表示正反馈增益,反之表示负反馈,而和为激励振幅,和是激励频率.当受迫振动激励频率接近系统固有频率,即多频激励的频率量级为时的系统动力学已经有诸多学者做了相关研
当系统(1)中时滞时,系统(1)为多频激励下无时滞Duffing振子的动力学问题,已经有许多平凡的结果.进一步,当时,自治系统的动力学行为较为简单,即存在平凡平衡点和对称的非平凡平衡点.这些平衡点的稳定性由相应特征方程根的情况决定.例如,有特征根和,即为不稳定鞍点.而的特征根为,即焦点形式的双稳平衡态.
以下讨论时,时滞位移反馈对系统平衡点局部分岔行为的影响,对应的特征方程为
(2) |
假设,其中实数,表示实部和虚部.当,系统发生Hopf分岔的必要条件是:
(3) |
对
(4) |
要使得
(5) |
根据Hopf分岔定理,此时平衡点发生Hopf分岔的临界时滞条件是
(6) |

图1 系统(1)在 时平衡点受时滞量和反馈增益影响的分岔集
Fig.1 Curve of system bifurcation on the plane of equilibrium points for
(a) 的Hopf分岔集 (b) 的Hopf分岔集
(a) Hopf bifurcation sets for (b) Hopf bifurcation sets for
下面考虑非平凡平衡点处的Hopf分岔,此时对应的特征方程为
(7) |
同样将特征根,代入方程(7),得到发生Hopf分岔的条件是
(8) |
对
(9) |
当时滞增益系数满足,进一步得到虚部的表达式
(10) |
根据Hopf分岔理论,将
(11) |
由此可见,系统非平凡平衡点在时滞量到达临界时滞前是稳定的.时滞的增大会使得系统非平凡对称平衡点失稳,因Hopf分岔产生共存的周期振荡.
本文通过数值仿真,仅仅研究系统两侧平衡点发生Hopf分岔后引起的共存周期振荡.因此,这里我们选取,初值,时滞变化区域,研究时滞系统的复杂动力学行为.当时,产生Hopf分岔,产生一对共存的周期振荡.

图2 系统(1) ,时共存吸引子
Fig.2 Phase portraits of system (1) for ,
(a) (b)
多频激励下的快慢变流形已经有了相关工
(12) |
这里是不超过整数的最大偶数.基于
(13) |
快慢变流形上的局部极值点,即二组Fold分岔点可以根据
(14) |
令,得到Fold分岔点坐标:
和 | (15) |
由

(a) 激励幅值和
(a) Excitation amplitudes for and

(b) 激励幅值和
(b) Excitation amplitudes for and
图3 系统(1)在外激频率共振比为下的多曲形流形
Fig.3 Multi-curve-shaped manifolds with excited resonance frequency ratio of system (1)
通过上述分析可知,在不同的参数条件下,系统均会因为时滞反馈和多频激励因素呈现出不同的分岔特性,这些特性会对系统最终的复杂行为产生影响.由于激励频率与系统自身固有频率之间存在着量级差距,系统将会产生不同尺度耦合效应,表现为大幅振荡与微幅振荡交替出现的动力学行为,同时受到时滞反馈的影响.下面,选取系统(1)激励幅值和,并进一步固定激励频率和,这里,基于多曲状快慢变流形讨论系统的不同模式振荡.
显然,在反馈增益条件下,负刚度系统的两个非平凡平衡点呈现稳定的焦点性态,快慢耦合效应不会随时滞量的变化而发生明显变化,系统特性始终表现为围绕多曲状流形上的大幅跳跃与微幅振荡耦合的周期振荡行为.

(a) 平面上的相轨
(a) Phase trajectories on the plane of

(b) 平面上叠加了慢变流形的相轨
(b) Phase trajectories on the plane of covered with the manifold
图4 ,,幅值和时的相图
Fig. 4 The phase trajectories of system (1) for ,, and

图5 ,,幅值和时的相图
Fig.5 The phase trajectories of system (1) for ,, and
(a)平面上的相轨迹 (b)平面上叠加了慢变流形的相轨
(a)Phase trajectories on the plane of (b) phase trajectories on the plane of covered with the manifold
此类动力学行为中,以快慢变流形上的局部极值点,即Fold分岔点,作为分界点,联接快慢过程.不同的稳态解(焦点吸引子)之间的跳跃过程,对应相对剧烈的大幅振荡,即激发态.而围绕吸引子逐步趋向平衡点的过程,对应相对平缓的微幅振荡,即沉寂态.不同振荡方式之间的分岔联接方式,受时滞影响不大,始终适用于慢变流形之上,在不同的稳态解(稳定的焦点)之间转迁.
下面,我们以外激励幅值为,时的情况为例,如
随着慢变量减小,系统沿着平衡点曲线到达第三个Fold分岔点,随后围绕左侧平衡点分支的轨迹第三次失去稳定性,在经过后发生再一次大幅跳跃,使得系统轨迹回到右侧稳定平衡点的吸引域中.此后,轨迹沿着稳定的平衡点运动,慢变量到达其变化最小值处.接着,系统轨迹沿着平衡点曲线折回,向左侧运动直到Fold分岔点.然后,右侧的稳定平衡点分支消失,系统重新回到左侧平衡点的吸引域中,系统轨线经过第四次大幅跳跃靠近平衡点,呈现焦点特性,因此系统振幅衰减,直至贴近平衡点曲线上的稳定流形部分.最后,轨线再一次回到初始点,完成整个振荡周期.值得指出的是,一个完整的振荡周期内,系统围绕着稳定流形与不稳定流形产生了四次大幅跃迁,每次转迁后轨线围绕新的平衡点振荡,幅值衰减.
在时滞反馈增益条件下,随着时滞量的增加,系统局部稳定的平衡点可以经过Hopf分岔生成稳定的极限环.此时,系统的动力学特性将发生明显的改变,将表现为围绕多曲状流形上的快慢变耦合的周期振荡.

(a) 平面上的相轨迹
(a) Phase trajectories on the plane of

(b) 平面叠加了慢变流形的相轨
(b) Phase trajectories on the plane of covered with the manifold
图6 ,,幅值和时的相图
Fig.6 The phase trajectories of system (1) for ,, and

(a) 平面上的相轨迹
(a) Phase trajectories on the plane of

(b) 平面叠加了慢变流形的相轨
(b) Phase trajectories on the plane of covered with the manifold
图7 ,,幅值和时的相图
Fig.7 The phase trajectories of system (1) for ,, and
当,且时滞满足Hopf分岔发生的临界条件,与之前激发态是围绕平衡点的运动模式不同,由于受时滞影响而产生极限环振荡,即此时系统激发态部分的极限环特征十分明显.随着控制参数在慢变流形上变化,系统动力特性的转迁既有围绕平衡点收敛,又有围绕局部稳定极限环的周期振荡.多曲状流形上稳定与不稳定流形的交替出现,诱发系统的复杂振荡依旧具有明显的跳跃,即由稳定分支跨越到其它稳定分支,同时包含有局部极限环振荡,这导致相平面上可以观察到密集的局部簇发行为.
以外激励幅值为,为例,系统的稳定平衡点分布在左侧的弧段和右侧开口的二弧段上.如
如
随后,系统轨迹向上折回, 受时滞影响沿着平衡点曲线微幅振荡运动到处.随着右侧稳定分支消失,系统产生第四次大幅跳跃,回到左侧的稳定流形上,围绕平衡点振荡.此时轨迹受到时滞作用,依旧呈现极限环振荡,体现在轨线围绕左侧分支仍然出现环状振荡.最后,轨线围绕左侧极限环微幅振荡,并持续向上运动回到初始点,完成整个振荡周期.值得指出的是,一个完整的振荡周期内,系统围绕着稳定流形与不稳定流形产生了四次大幅转迁.由于受到时滞的影响,轨线在一段朝向的暂态过程后,都会因Hopf分岔产生围绕两侧平衡点的极限环振荡.
研究了时滞反馈与多频激励联合作用下Duffing振子的非线性动力学.通过求解时滞反馈振子的特征方程,讨论了特征根分布,获得了Hopf分岔发生的条件,并在反馈增益强度和时滞平面上给出了分岔区域.通过棣莫弗公式,对系统进行快慢流形解耦,得到了稳定和不稳定流形的多弯曲联接特性.结合数值计算,给出了诸如焦点/焦点型混合振荡,局部极限环/局部极限环的混合振荡等复杂动力学现象.结果表明,含时滞反馈的非线性系统,其快慢动力学行为有着更特殊的规律性,会受到更多因素作用.当反馈增益时,调节时滞量不会改变系统振荡的转迁机理,轨线始终围绕着稳定平衡点吸引子往复跳跃.随着反馈增益和时滞量的增大,系统出现极限环吸引子之间的跃迁特性.上述动力学行为对激励系数和时滞反馈十分敏感依赖.本文的研究结果对通过时滞反馈和多频激励来增强或抑制快慢动力学行为,产生更为新颖的快慢振荡模式具有较强的理论意义和参考价值.
参 考 文 献
Wang F, Xu J. Parameter design for a vibration absorber with time-delayed feedback control. Acta Mechanica Sinica, 2019, 35(3): 624~640 [百度学术]
Xu Q, Stepan G, Wang Z H. Delay-dependent stability analysis by using delay-independent integral evaluation. Automatica, 2016, 70: 153~157 [百度学术]
Sun X T, Wang F, Xu J. Dynamics and realization of a feedback-controlled nonlinear isolator with variable time delay. Journal of Vibration and Acoustics-Transactions of the ASME, 2019, 141(2): 021005 [百度学术]
Ge J H, Xu J. Synchronization and synchronized periodic solution in a simplified five-neuron BAM neural network with delays. Neurocomputing, 2011, 74(6): 993~999 [百度学术]
王在华,胡海岩.时滞动力系统的稳定性与分岔:从理论走向应用.力学进展,2013, 43(1): 3~20 [百度学术]
Wang Z H, Hu H Y. Stability and bifurcation of delayed dynamic systems: from theory to application. Advances in Mechanics, 2013, 43(1): 3~20(in Chinese) [百度学术]
Cai G P, Chen L X. Delayed feedback control experiments on some flexible structures. Acta Mechanica Sinica, 2010, 26(6): 951~965 [百度学术]
Zheng Y G, Wang Z H. Stability analysis of nonlinear dynamic systems with slowly and periodically varying delay. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(10): 3999~4009 [百度学术]
Zhao Y Y, Xu J. Effects of delayed feedback control on nonlinear vibration absorber system. Journal of Sound and Vibration, 2007, 308: 212~230 [百度学术]
Fan D G, Wang Q Y.Synchronization and bursting transition of the coupled Hindmarsh-Rose systems with asymmetrical time-delays. Science China-Technological Sciences, 2017,60(70):1019~1031 [百度学术]
Zheng Y G, Wang Z H. Relaxation oscillation and attractive basins of a two-neuron Hopfield network with slow and fast variables. Nonlinear Dynamics, 2012, 70(2): 1231~1240 [百度学术]
张舒,徐鉴.时滞耦合系统非线性动力学的研究进展. 力学学报,2017, 49(3): 565~587 [百度学术]
Zhang S, Xu J. Review on nonlinear dynamics in systems with coupling delays. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 565~587 (in Chinese) [百度学术]
郑远广,王在华.含时滞的快-慢耦合系统的动力学研究进展.力学进展,2011, 41: 400~410(Zheng Y G, Wang Z H. Advances in dynamics of slow-fast systems with time delay. Advances in Mechanics, 2011, 41: 400~410(in Chinese)) [百度学术]
郝五零,张伟.参数激励和外激励联合作用下薄板的非线性动力学.动力学与控制学报,2014, 12(2): 139~146 [百度学术]
Hao W L, Zhang W. Nonlinear dynamics of a parametrically and externally excited thin plate. Journal of Dynamics and Control, 2014, 12(2): 139~146(in Chinese) [百度学术]
Hu W P, Song M Z, Deng Z C. Axial dynamic buckling analysis of embedded single-walled carbon nanotube by complex structure-preserving method. Applied Mathematical Modelling, 2017, 52: 15~27 [百度学术]
Wei S, Han Q K, Peng Z K, et al. Dynamic analysis of wind turbine gearboxes with unknown-but-bounded parameters under random wind excitation. IET Renewable Power Generation, 2017, 11(4): 433~442 [百度学术]
Xu X Y, Ni L, Wang R B. Synchronous transitions of up and down states in a network model based on stimulations. Journal of Theoretical Biology, 2017, 412: 130~137 [百度学术]
康艳梅,徐健学,谢勇.双稳杜芬振子的随机共振及其动力学机制. 力学学报,2004,36(2):247~253 [百度学术]
Kang Y M, Xu J X, Xie Y. Stochastic resonance in bistable Duffing oscillators and its dynamical mechanisms. Chinese Journal of Theoretical and Applied Mechanics, 2004,36(2):247~253(in Chinese) [百度学术]
Chudzik A, Perlikowski P, Stefanski A, et al. Multistability and rare attractors in Van der Pol-Duffing oscillator. International Journal of Bifurcation and Chaos, 2011, 21(7): 1907~1912 [百度学术]
Yu Y, Wang Q Q, Bi Q S, et al. Multiple-S-Shaped critical manifold and jump phenomena in low frequency forced vibration with amplitude modulation. International Journal of Bifurcation and Chaos, 2019, 29(5):1930012 [百度学术]
Maccari A. Vibration amplitude control for a Van Der Pol-Duffing oscillator with time delay. Journal of Sound and Vibration, 2008, 317(1-2): 19~20 [百度学术]
Wang Z H, Hu H Y, Xu J, et al. Effect of delay combinations on stability and Hopf bifurcation of an oscillator with acceleration-derivative feedback. International Journal of Nonlinear Mechanics, 2017, 94: 392~399 [百度学术]
Wen S F, Shen Y J, Yang S P. Dynamical analysis of Duffing oscillator with fractional-order feedback with time delay. Acta Physica Sinica, 2016, 65(9):094502 [百度学术]
Sun X T, Xu J, Jing X J, et al. Beneficial performance of a quasi-zero-stiffness vibration isolator with time-delayed active control. International Journal of Mechanical Sciences, 2014, 82: 32~40 [百度学术]
Li J R, Xu W, Yang X L, et al. Chaotic motion of Van der Pol-Mathieu-Duffing system under bounded noise parametfic excitation. Journal of Sound and Vibration, 2008, 309(1-2): 330~337 [百度学术]
Li X H, Shen Y J, Sun J Q, et al. New periodic-chaotic attractors in slow-fast Duffing system with periodic parametric excitation. Scientific Reports, 2019, 9: 11185 [百度学术]
Xu Y, Li Y G, Li J J, et al. The phase transition in a bistable duffing system driven by levy noise. Journal of Statistical Physics, 2015, 158(1): 120~131 [百度学术]
Zhang L, Wang H L, Hu H Y. Global view of Hopf bifurcations of a van der Pol oscillator with delayed state feedback. Science China-Technological Sciences, 2010, 53(3): 595~607 [百度学术]
Wang Y Z, Li F M. Dynamical properties of Duffing-van der Pol oscillator subject to both external and parametric excitations with time delayed feedback control. Journal of Vibration and Control, 2015, 21(2): 371~387 [百度学术]
Xie C H , Wu Y, Liu Z S. Modeling and active vibration control of lattice grid beam with piezoelectric fiber composite using fractional order PD mu algorithm. Composite Structures, 2018, 198: 126~134 [百度学术]
Qu H Y, Li T T, Chen G D. Multiple analytical mode decompositions for nonlinear system identification from forced vibration. Engineering Structures, 2018, 173: 979~986 [百度学术]
Wang Q Q, Yu Y, Zhang Z D, et al. Melnikov-threshold-triggered mixed-mode oscillations in a family of amplitude-modulated forced oscillator. Journal of Low Frequency Noise Vibration and Active Control, 2019, 38(2): 377~387 [百度学术]
Han X J, Zhang Y, Bi Q S, et al. Two novel bursting patterns in the Duffing system with multiple-frequency slow parametric excitations. Chaos, 2018, 28(4): 043111 [百度学术]
Han X J, Bi Q S, Ji P, et al. Fast-slow analysis for parametrically and externally excited systems with two slow rationally related excitation frequencies. Physical Review E, 2015, 92(1): 012911 [百度学术]
Song Z G, Xu J. Codimension-two bursting analysis in the delayed neural system with external stimulations. Nonlinear Dynamics, 2012, 67(1): 309~328 [百度学术]
Zheng Y G, Wang Z H. Delayed Hopf-bifurcation in time-delayed slow-fast systems. Science China-Technological Sciences, 2010, 53(2): 656~663 [百度学术]
Jiang S Y, Xu J, Yan Y. Stability and oscillations in a fast-slow flexible joint system with transformation delay. Acta Mechanica Sinica, 2014, 30(5): 727~738 [百度学术]
Han X J, Liu Y, Bi Q S, et al. Frequency-truncation fast-slow analysis for parametrically and externally excited systems with two slow incommensurate excitation frequencies. Communications in Nonlinear Science and Numerical Simulation, 2019, 72: 16~25 [百度学术]
Qian Y H, Yan D M. Fast-Slow dynamics analysis of a coupled duffing system with periodic excitation. International Journal of Bifurcation and Chaos, 2018, 28(12): 1850148 [百度学术]