摘要
对圆柱绕流的涡激振动过程进行了数值模拟,研究了单、双自由度下涡激振动的力学特性、振幅特性、频谱特性,探讨了单、双自由度的适用条件.结果表明,单自由度条件下,随着约化速度的增加,阻力系数时均值先增大后减小,升力系数幅值先增大后减小再增大,且进入和离开“锁定”区间时二者均会产生波动.双自由度条件下,横向与流向无量纲振幅均随雷诺数的增大先增大后减小.低质量比时,流向振动的影响不可忽略,而高质量比时,可忽略流向振动的影响.
圆柱涡激振动作为一种经典的流固耦合现象,广泛存在于多种工程领域中,例如高大建筑物、海洋立管、桥梁的桥墩和拉索
由于流动问题的复杂性,在以往对涡激振动现象的研究中,通常忽略流向运动,只考虑横向的单自由度运动.Feng
后有研究提出,在某些条件下同时考虑流向和横向两个自由度,才能对物体涡激振动现象做出准确描述,对双自由度涡激振动的研究随之增多.Gsell
虽然目前对于单自由度(1-DOF)和双自由度(2-DOF)涡激振动已开展了一定程度的研究,但何时可以使用单自由度条件,何时必须使用双自由条件,至今还未有定论.本文利用数值模拟方法对单、双自由度工况下横向与流向涡激振动的力学特性、振幅特性、频谱特性进行了研究,并在此基础上探讨了单、双自由度的适用条件.
将复杂的圆柱涡激振动现象简化为质量-弹簧-阻尼系统,柱体可以在流向(x方向)和横向(y方向)自由振

图1 物理模型
Fig.1 Physical model
所采用的控制方程为:
(1) |
(2) |
(3) |
(4) |
(5) |
式中,u、v分别为x、y方向的速度,m/s;ρ为流体密度,kg/
本文以水为流动工质,雷诺数Re=200,选用层流模型进行计算,以清晰的显示旋涡特性.入口定义为速度入口边界;出口定义为压力出口边界,给定静压和适当的回流条件;圆柱表面设为无滑移固体壁面,近壁面处使用标准壁面函数法处理;垂直于流向的上下两边界使用对称边界条件,边界上各单元节点的变量沿法向分量为零.
压力-速度耦合选择Coupled算法,压力项离散采用Standard格式,动量方程离散采用Quick格式,瞬态项采用二阶隐式格式,动网格方法同时采用扩散光顺法与网格重构法,控制方程的求解采用四阶龙格-库塔法并通过UDF实现,时间步长设置为0.002s.当计算域内所有控制体积的各方程平均绝对残差在1
为提高计算精度并节省计算资源,对计算区域采取结构化网格划分,圆柱周围区域网格加密处理,远场区域网格相对稀疏.圆柱水动力可分解为法向升力和流向阻力,将升力Fl和阻力F d无量纲化,分别得到升力系数Cl和阻力系数Cd:
(6) |
(7) |
式中,U为流体速度,m/s;Fl、Fd分别为作用于单位长度圆柱上的升力、阻力,N/m.
选用密度不同的四套网格系统进行独立性测试,按照网格单元数由小到大(8250、15058、19110、23483)依次编号为网格1-4,计算得到的Cd时均值、Cl幅值和St如

图2 网格独立性验证
Fig.2 Summary of grids independence checks for simulation

图3 计算区域网格
Fig.3 Schematic of the computational grids
质量比m*反映材料特性,表征固体密度与流体密度的比值,可由下式计算:
(8) |
t时刻运动圆柱流向无量纲位移Ax*和横向无量纲位移Ay*反映圆柱振动位移与圆柱直径之间的联系,可由下式计算:
(9) |
(10) |
约化速度Ur反映流体速度与圆柱直径的关系,可由下式计算:
(11) |
式中, 表示单位长度柱体的质量,kg/m;fn表示柱体的固有频率,Hz.
对本文数值计算方法的准确性进行验证,如

(a) 流向验证
(a) In-line verification

(b) 横向验证
(a) Cross-flow verification
图4 本文结果与文献结果对比
Fig.4 Comparisons between present results and literature results
本文计算得到的、与文献中相比,具有相同的变化趋势和合理的误差,证明了本文数值计算方法的准确性.
圆柱绕流单自由度涡激振动在Re=150、m*=2.55条件下开展,工况如
不同约化速度下升力系数、阻力系数的时间历程曲线如

(a) Ur=3

(b) Ur=4

(c) Ur=5

(d) Ur=6

(e) Ur=7

(f) Ur=8

(g) Ur=9
图5 升力系数和阻力系数的时间历程曲线
Fig.5 Time-history curve of lift and drag coefficients
如


(a) Ur=3

(b) Ur=4

(c) Ur=5

(d) Ur=6

(e) Ur=7

(f) Ur=8

(g) Ur=9
图6 横向无量纲振幅和升力系数频谱图
Fig.6 Frequency spectrogram of cross-flow dimensionless amplitude and lift coefficient

图7 频率比随约化速度的变化
Fig.7 Variations of frequency ratio with reduced velocity

(a) m*=2、3

(b) m*=5、7、12.8
图8 横向无量纲振幅随Re的变化
Fig.8 Variations of cross-flow dimensionless amplitude with Re
通过对比可以得出,
双自由度、不同质量比下流向无量纲振幅随雷诺数的变化规律如

图9 流向无量纲振幅随Re的变化
Fig.9 Variations of in-line dimensionless amplitude with Re

图10 横向无量纲振幅随质量比的变化
Fig.10 Variations of cross-flow dimensionless amplitude with mass ratio
(1)单自由度条件下,随着约化速度的增加,阻力系数时均值先增大后减小,升力系数幅值先增大后减小再增加;频率比随约化速度的增加而逐渐升高,近似等于1.0时发生“锁定”现象,且进入和离开“锁定”区间会使阻力系数时均值和升力系数幅值产生波动.
(2)双自由度条件下,横向无量纲振幅随着雷诺数的增加先增大后减小,随着质量比的增加先减小后趋于定值;流向无量纲振幅随着雷诺数的增加先增大后减小,且质量比越高变化趋势越平缓.
(3)质量比较低时,流向振动的影响不可忽略,必须使用双自由度条件;质量比较高时,流向振动的影响较弱,可使用单自由度条件.
参考文献
Zhu Q, Xu Y L, Zhu L D, et al. Vortex-induced vibration analysis of long-span bridges with twin-box decks under non-uniformly distributed turbulent winds. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172: 31~41 [百度学术]
Hsieh S C, Ying M L, Chiew Y M. Flow characteristics around a circular cylinder subjected to vortex-induced vibration near a plane boundary. Journal of Fluids and Structures,2016,65: 257~277 [百度学术]
Liu B, Jaiman R K. Interaction dynamics of gap flow with vortex-induced vibration in side-by-side cylinder arrangement. Physics of Fluids, 2016, 28(12):127103 [百度学术]
Munir A, Zhao M, Wu H, et al. Numerical investigation of the effect of plane boundary on two degrees of freedom of vortex-induced vibration of a circular cylinder in oscillatory flow. Ocean Engineering, 2018, 148:17~32 [百度学术]
高云,任铁,付世晓,等.柔性立管涡激振动响应特性试验研究.振动与冲击, 2015, 34(17):6~11 [百度学术]
Gao Y, Ren T, Fu S X, et al. Tests for response characteristics of VIV of a flexible riser. Chinese Journal of Vibration and Shock, 2015,34(17):6~11(in Chinese) [百度学术]
康庄,张橙,付森,等.圆柱体涡激振动的高阶非线性振子模型研究.振动与冲击,2018,37(18):48~58 [百度学术]
Kang Z, Zhang C, Fu S, et al. Nonlinear oscillator model for the vortex-induced vibration of a cylinder. Chinese Journal of Vibration and Shock, 2018, 37(18):48~58(in Chinese) [百度学术]
Feng C C. The measurement of vortex-induced effects in flow past stationary and oscillating circular and D-section cylinders[Ph.D Thesis].Vancouver: University of British Columbia, 1968 [百度学术]
Anagnostopoulos P, Bearman P W. Response characteristics of a vortex-excited cylinder at low Reynolds numbers. Journal of Fluids and Structures, 1992, 6(1):39~50 [百度学术]
Pan Z Y, Cui W C, Miao Q M. Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using RANS code. Journal of Fluids and Structures, 2007, 23(1):23~37 [百度学术]
Klamo J T, Leonard A, Roshko A. The effects of damping on the amplitude and frequency response of a freely vibrating cylinder in cross-flow. Journal of Fluids and Structures, 2006, 22(6-7):845~856 [百度学术]
Jin Y, Dong P. A novel wake oscillator model for simulation of cross-flow vortex induced vibrations of a circular cylinder close to a plane boundary. Ocean Engineering, 2016, 117:57~62 [百度学术]
Guilmineau E, Queutey P. Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow. Journal of Fluids and Structures, 2004, 19(4):449~466 [百度学术]
Khalak A, Williamson C H K. Motions,forces and mode transitions in vortex-induced vibrations at low mass-damping. Journal of Fluids and Structures, 1999, 13(7-8):813~851 [百度学术]
Gsell S, Bourguet R, Braza M. Two degrees of freedom vortex-induced vibrations of a circular cylinder at Re=3900. Journal of Fluids and Structures, 2016, 67:156~172 [百度学术]
Wu J, Lie H, Larsen C M, et al. Vortex-induced vibration of a flexible cylinder: Interaction of the in-line and cross-flow responses. Journal of Fluids and Structures, 2016, 63:238~258 [百度学术]
Modir A, Kahrom M, Farshidianfar A. Mass ratio effect on vortex induced vibration of a flexibly mounted circular cylinder, an experimental study. International Journal of Marine Energy, 2016, 16:1~11 [百度学术]
Pastrana D, Cajas J C, Lehmkuhl O, et al. Large-eddy simulations of the vortex-induced vibration of a low mass ratio two degrees of freedom circular cylinder at subcritical Reynolds numbers. Computers and Fluids, 2018, 173:118~132 [百度学术]
Morales Delgado V F, Gómez-Aguilar J F, Taneco-Hernández M A, et al. A novel fractional derivative with variable- and constant-order applied to a mass-spring-damper system. European Physical Journal Plus, 2018, 133(2):78 [百度学术]
Stappenbelt B, Lalji F, Tan G. Low mass ratio vortex-induced motion. In:16th Australasian Fluid Mechanics Conference, 2007, 2-7:207~209 [百度学术]
Kang Z, Zhang C, Chang R, et al. A numerical investigation of the effects of Reynolds number on vortex-induced vibration of the cylinders with different mass ratios and frequency ratios. International Journal of Naval Architecture and Ocean Engineering, 2019,11(2):835~850 [百度学术]
Ahn H T, Kallinderis Y. Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes. Journal of Computational Physics,2006,219(2):671~696 [百度学术]
Borazjani I, Sotiropoulos F. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity-wake interference region. Journal of Fluid Mechanics, 2009, 621:321~364 [百度学术]