摆动Atwood机混沌行为的几何分析
作者:
基金项目:

国家自然科学基金资助项目(12272037,12232009,11872107)


Geometric Analysis of Chaotic Behavior of the Swinging Atwood’s Machine
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    利用几何方法研究了一种具有附加库仑相互作用的三维摆动Atwood机系统的混沌行为.通过描述测地线分布的Jacobi-Levi-Civita(JLC)方程研究与位形空间流形曲率特性相关的动力学稳定性.计算了Atwood机系统在给定的Jacobi度量下的数量曲率.同时比较了Poincaré截面提供的定性信息与几何研究结果,二者完全一致.数值计算的结果表明,在具有附加库仑相互作用的摆动Atwood机系统中,其混沌区域中的点沿位形空间流形测地线的曲率为正值波动.

    Abstract:

    The chaotic behavior of a three-dimensional swinging Atwood’s machine system with additional Coulomb interactions is studied using geometric methods. The stability of dynamics, related to curvature properties of the configuration space manifold, is investigated through the Jacobi-Levi-Civita (JLC) equation for geodesic spread.The scalar curvature of the Atwood’s machine system under the given Jacobi metric is calculated. Meanwhile, the qualitative information provided by the Poincaré sections are compared with the results of the geometric investigation, and they are completely consistent.The results of numerical calculations indicate that in the swinging Atwood’s machine system with additional Coulomb interactions, the curvature along geodesics on the configuration space manifold fluctuates with positive values in chaotic regions.

    参考文献
    相似文献
    引证文献
引用本文

薛雷,王本亮.摆动Atwood机混沌行为的几何分析[J].动力学与控制学报,2025,23(3):65~72; Xue Lei, Wang Benliang. Geometric Analysis of Chaotic Behavior of the Swinging Atwood’s Machine[J]. Journal of Dynamics and Control,2025,23(3):65-72.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-03
  • 最后修改日期:2025-02-12
  • 在线发布日期: 2025-03-25
文章二维码

微信公众号二维码

手机版网站二维码