离散Birkhoff系统的Noether定理
作者:
基金项目:

国家自然科学基金资助项目(12172003)

  • 摘要
  • | |
  • 访问统计
  • | |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在非等时变分的框架下, 由Pfaff-Birkhoff变分原理重新导出了Birkhoff方程和Pfaff 1-形式, 进一步研究了Pfaff 1-形式在李群作用下的不变性并给出了经典Noether定理的一种几何表述. 仿照连续情形, 利用变步长的求积公式近似Pfaff作用量, 依次构建了离散Pfaff-Birkhoff原理、离散Birkhoff方程和离散Pfaff 1-形式. 最后考虑由离散Birkhoff方程所描述的离散动力系统: 如果系统的离散Pfaff作用量在李群作用下具有不变性, 那么由无穷小生成元和离散Pfaff 1-形式通过缩并定义的离散动量映射保持守恒, 即Noether定理对离散Birkhoff系统而言依然成立.

    Abstract:

    In the framework of non-isochronous variations, the Pfaff-Birkhoff variational principle is first restructured and then the Birkhoffian equations and the Pfaffian 1-form are rederived from the reformed principle correspondingly. The classical Noether theorem for Birkhoffian systems is further reformulated in a geometric way, which reveals the relationship between the invariance of the Pfaffian 1-form under Lie group actions and associated conservation laws. In parallel with the continuous case, the discrete analogues of the Pfaff-Birkhoff variational principle, the Birkhoffian equations and the Pfaffian 1-form are constructed successively from the discretized Pfaffian action sum, which is an approximation of the Pfaffian action integral with adaptive time steps. For discrete Birkhoffian systems, i.e., systems characterized by the discrete Birkhoffian equations particularly, the invariance of the discrete Pfaffian 1-form under Lie group actions also results in a conserved discrete momentum map, defined by the contraction of the corresponding infinitesimal generator and the discrete Pfaffian 1-form.

    参考文献
    引证文献
引用本文

宋尹洁,刘亮亮,孔新雷.离散Birkhoff系统的Noether定理[J].动力学与控制学报,2025,23(3):32~39; Song Yinjie, Liu Liangliang, Kong Xinlei. Noether Theorem for Discrete Birkhoffian Systems[J]. Journal of Dynamics and Control,2025,23(3):32-39.

复制
分享
文章指标
  • 点击次数:134
  • 下载次数: 98
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-12-18
  • 最后修改日期:2025-02-08
  • 在线发布日期: 2025-03-25
文章二维码

微信公众号二维码

手机版网站二维码