一种几何精确梁的Poisson积分子
作者:
基金项目:

国家自然科学基金资助项目(12272037, 12232009)


A Poisson Integrator for Geometric Exact Beam
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在Hamilton力学的Hamel形式下,针对无穷维力学系统的模拟问题提出了一种快速的几何数值积分算法.首先,引入对偶标架算子,并借此导出约化Poisson括号,所得Hamilton方程组能够复原Hamel场方程及其相容性条件.通过离散Poisson括号结合辛Euler格式和隐式中点格式得到Poisson积分子.其次,以几何精确梁的运动学模型为例,推导连续和离散情形下的约化Poisson括号和Hamilton方程组,获得几何精确梁的Poisson积分子.最后,通过数值仿真验证了该Poisson积分子在保持能量和动量的同时,相较于Hamel场积分子提升了计算效率.

    Abstract:

    Under the Hamel’s formulism of Hamiltonian mechanics, a fast discrete geometric numerical integration algorithm is proposed for the simulation of infinitedimensional mechanical systems. First, a dual frame operator is introduced, based on which the reduced Poisson bracket is derived. The resulting Hamiltonian equations recover the Hamel field equations and their compatibility conditions. By combining the discrete Poisson bracket with the symplectic Euler scheme and the implicit midpoint scheme, a Poisson integrator is constructed. Next, using the geometrically exact beam’s kinematic model as an example, the reduced Poisson bracket and Hamiltonian equations are derived for both continuous and discrete cases, leading to the Poisson integrator for the geometrically exact beam. Finally, numerical simulations demonstrate that the proposed Poisson integrator preserves energy and momentum while significantly improving computational efficiency compared to the Hamel field integrator.

    参考文献
    相似文献
    引证文献
引用本文

陈潇,史东华.一种几何精确梁的Poisson积分子[J].动力学与控制学报,2025,23(3):9~17; Chen Xiao, Shi Donghua. A Poisson Integrator for Geometric Exact Beam[J]. Journal of Dynamics and Control,2025,23(3):9-17.

复制
分享
文章指标
  • 点击次数:151
  • 下载次数: 134
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-12-02
  • 最后修改日期:2025-01-26
  • 在线发布日期: 2025-03-25
文章二维码

微信公众号二维码

手机版网站二维码