基于物理引导的RBF神经网络逆模型在ZTT运动平台前馈控制中的应用
作者:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    精密运动平台是半导体设备的核心部件,其运动性能直接决定了整个系统的基础性能.在工程应用中,运动平台的非线性特性对精密运动控制产生显著影响,例如柔性导向、线缆力和磁浮补偿等因素引入的非线性力.前馈控制器能够有效补偿非线性扰动和轨迹偏差.然而,传统的逆模型前馈方法需要耗费大量精力来准确建立被控对象的逆模型,而流行的迭代学习前馈方法则对运动工况的重复性要求较高.此外,自适应前馈控制在参数调整过程中可能导致系统暂态响应的不稳定性. 为了解决这些问题,本文提出了一种基于物理引导的径向基函数(RBF)神经网络逆模型前馈控制器.该方法利用RBF神经网络优秀的非线性函数逼近能力,并通过梯度下降法自动优化模型,显著减少了建模的工作量.此外,我们在RBF神经网络逆模型中嵌入了加速度前馈的先验经验,从而大幅降低了跟踪误差,提高了系统的响应速度.

    Abstract:

    The precision motion platform is a fundamental component of semiconductor equipment, with its motion performance serving as the foundation for the entire system. In engineering applications, the nonlinear characteristics of the moving platform, such as the nonlinear forces introduced by flexible steering, cable forces, and maglev compensation, significantly impact precision motion control. Traditional feedforward control methods, such as the inverse model feedforward approach, require substantial energy to accurately construct the inverse model of the object plant. Meanwhile, the iterative learning feedforward method demands high repeatability of motion conditions. Additionally, adaptive feedforward control can lead to instability in the system’s transient response during parameter adjustments. To address these challenges, this paper proposes an inverse model feedforward controller based on a physically guided radial basis function (RBF) neural network. This approach leverages the RBF neural network’s superior nonlinear function approximation capabilities and employs the gradient descent method for automatic model optimization, thereby significantly reducing the modeling workload. Furthermore, by incorporating prior experience of acceleration feedforward into the RBF neural network inverse model, the proposed method effectively reduces tracking error and enhances the system’s response speed.

    参考文献
    相似文献
    引证文献
引用本文

吴聪懿,徐云浪,陈椿元,金煜,杨晓峰.基于物理引导的RBF神经网络逆模型在ZTT运动平台前馈控制中的应用[J].动力学与控制学报,2025,23(1):78~85; Wu Congyi, Xu Yunlang, Chen Chunyuan, Jin Yu, Yang Xiaofeng. Physics Guided RBF Neural Networks for Inversion-based Feedforward Control Applied to ZTT Stage[J]. Journal of Dynamics and Control,2025,23(1):78-85.

复制
分享
文章指标
  • 点击次数:237
  • 下载次数: 212
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-09-14
  • 最后修改日期:2024-10-10
  • 在线发布日期: 2025-01-24
文章二维码

微信公众号二维码

手机版网站二维码