基于变论域模糊迭代学习的直线电机位置控制
作者:
基金项目:

国家重点研发计划项目(2022YFB3303902),国家自然科学基金资助项目(91648204)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为提升永磁同步直线电机的位置跟踪精度,提出一种带有自适应遗忘因子的变论域模糊迭代学习控制策略,应用于电机控制系统,该控制策略集成了模糊逻辑、迭代学习和自适应遗忘因子的优点,能够有效提升控制系统的跟踪精度.变论域模糊控制器通过伸缩因子动态改变论域大小,设计二级模糊控制器用于生成伸缩因子.采用自适应遗忘因子减小迭代学习周期切换时产生的位置误差,设计平滑切换策略和缓步策略改进遗忘因子的自适应率,进一步减小周期切换时的位置误差.结果表明,该控制策略可以有效提高电机的位置跟踪精度,加快控制系统的收敛速度.

    Abstract:

    To improve the position tracking accuracy of permanent magnet synchronous linear motor, a variable universe fuzzy iterative learning control strategy with adaptive forgetting factor is proposed and applied to the motor control system. The control strategy integrates the advantages of fuzzy logic, iterative learning and adaptive forgetting factor, which can effectively improve the tracking accuracy of the control system. Variable universe fuzzy controller dynamically changes the size of the universe by scaling factor, and a two-level fuzzy controller is designed to generate scaling factor. Adaptive forgetting factor is used to reduce the position error during iterative learning cycle switching. Smooth switching strategy and slow stepping strategy are designed to improve the adaptive rate of forgetting factor and further reduce the position error during cyclic switching. The results show that this control method can effectively improve the position tracking accuracy and accelerate the convergence speed.

    参考文献
    相似文献
    引证文献
引用本文

张艺镪,张涛,李勇,张国鹏,王淏,张华良.基于变论域模糊迭代学习的直线电机位置控制[J].动力学与控制学报,2024,22(12):45~53; Zhang Yiqiang, Zhang Tao, Li Yong, Zhang Guopeng, Wang Hao, Zhang Hualiang. Position Control of PMLSM Based on Variable Universe Fuzzy Iterative Learning[J]. Journal of Dynamics and Control,2024,22(12):45-53.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-06
  • 最后修改日期:2024-09-27
  • 在线发布日期: 2024-12-27
文章二维码

微信公众号二维码

手机版网站二维码