不可压缩超弹性球体中微孔运动的分岔和混沌
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(12172086)


Bifurcation and Chaos of MicroVoid Motion in Incompressible Hyperelastic Sphere
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对一类径向横观各向同性不可压缩neoHookean材料组成的球体,研究了周期扰动载荷作用下球体中心处微孔的动力学行为.根据平衡微分方程和初边值条件等导出描述微孔径向对称运动的强非线性的非自治常微分方程,通过对微分方程解的定性分析,讨论了微孔的定性行为:(1) 在常值载荷作用下,讨论了材料参数和结构参数对系统平衡点的影响,特别分析了微孔的二次转向分岔;通过对系统势阱的分析,讨论了微孔在常值载荷作用下的周期和振幅跳跃现象.(2) 在周期扰动载荷作用下,利用时程曲线,Poincaré截面和最大Lyapunov指数分别讨论了二次转向分岔情形下微孔的拟周期和混沌运动,给出了系统产生混沌的条件,并进一步分析了周期扰动载荷对微孔混沌运动的影响.

    Abstract:

    The dynamical behaviors are studied for a sphere with a micro-void at the center under periodic perturbation loads, where the sphere is composed of a class of radially transversely isotropic incompressible neo-Hookean materials. A strongly nonlinear nonautonomous ordinary differential equation describing the radially symmetric motion of the micro-void is derived in terms of the equilibrium differential equation and initial-boundary conditions. Through qualitatively analyzing the solutions of the differential equation, some interesting qualitative behaviors of the micro-void are discussed. (1) For constant loads, the effects of material parameters and structural parameters on equilibrium points of the system are discussed, and the bifurcation behaviors, especially the secondary turning bifurcation of the micro-void are analyzed. By analyzing the well potentials, the phenomena of period and amplitude jump of the micro-void are discussed. (2) For periodic perturbation loads, the quasiperiodic and chaotic motions of the micro-void are discussed in terms of the secondary turning bifurcation by using the time response curves, Poincaré sections and the maximal Lyapunov characteristic exponents, the existence conditions of chaos are given, and the effects of periodic perturbation loads on the chaotic motions of the micro-void are further analyzed.

    参考文献
    相似文献
    引证文献
引用本文

马敏富,赵振涛,陈威屹,袁学刚.不可压缩超弹性球体中微孔运动的分岔和混沌[J].动力学与控制学报,2024,22(1):79~86; Ma Minfu, Zhao Zhentao, Chen Weiyi, Yuan Xuegang. Bifurcation and Chaos of MicroVoid Motion in Incompressible Hyperelastic Sphere[J]. Journal of Dynamics and Control,2024,22(1):79-86.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-19
  • 最后修改日期:2023-03-19
  • 录用日期:
  • 在线发布日期: 2024-03-18
  • 出版日期:
文章二维码

微信公众号二维码

手机版网站二维码