用于结构减震控制的拉索式惯容系统跨层布置优化研究
CSTR:
作者:
作者单位:

1.同济大学 结构防灾减灾工程系,上海 200092;2.日本东北工业大学 建筑系,仙台 982-8577

作者简介:

E-mail: liyuxie@tongji.edu.cnE-mail: liyuxie@tongji.edu.cn

通讯作者:

E-mail: liyuxie@tongji.edu.cn

基金项目:

国家自然科学基金资助项目(51778490),上海市自然科学基金面上项目(20ZR1461800),广东省地震工程与应用技术重点实验室开放基金项目(2017B030314068)


STUDY ON OPTIMIZATION OF CROSS-LAYER CABLE-BRACING INERTER SYSTEM FOR STRUCTURAL SEISMIC RESPONSE CONTROL
Author:
Affiliation:

1.Department of Disaster Mitigation for Structures, Tongji University, Shanghai 200092, China;2.Department of Architecture, Tohoku Institute of Technology, Sendai 9828577, Japan

Fund Project:

The project supported by the National Natural Science Foundation of China(51778490)、the Natural Science Foundation of Shanghai (20ZR1461800),Open Research Fund Program of Guangdong Key Laboratory of Earthquake Engineering and Application Technology(2017B030314068)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    本文提出了一种拉索式惯容系统的跨层布置方法用于结构减震控制.将地震激励模拟为金井清谱随机激励,构建统一的状态空间方程,进行线性系统直接随机分析,获得系统响应统计量.利用布置效率确定惯容系统布置位置,考虑惯容系统整体出力影响惯容系统自身造价及结构柱额外受力,将惯容系统出力状况作为经济指标.考虑结构位移响应及加速度响应与结构性能的相关性,将结构的位移响应及加速度响应作为减震效果指标.利用设计参数的多目标优化,获取惯容系统最优参数的帕累托前沿,指导设计并比较不同布置方法.最后,利用一个10层的基准结构进行减震效果分析,验证跨层布置的惯容系统优于一般层间惯容系统.

    Abstract:

    This paper presents design method for a cross-layer layout of cable-bracing inerter system for structural seismic response control. The seismic excitation was modeled as the Kainai-Tajimi spectrum, a unified state space equation was constructed, and the direct random analysis of the linear system was carried out to obtain the system response statistics. The layout efficiency is used to determine the layout position of the inerter system. Considering the force of inerter system influences the cost of the inerter system and the additional stress on the structural column, the force of inerter system is taken as an economic index. Considering the correlation between the structural displacement response and acceleration response and the structural performance, the structural displacement response and acceleration response are taken as the performance index. Using multi-objective optimization of design parameters, the Pareto front can be obtained to guide design and compare different layout methods. Finally, a 10-story benchmark is used to analyze the damping effect and verify that the cross-layer distributed inerter system is superior to the general inter-layer distributed inerter system.

    表 1 模型的参数信息Table 1 Specifications of the analytical model
    表 2 模型的无阻尼基本周期Table 2 Undamped fundamental period of the model
    图1 拉索式惯容系统示意图Fig.1 Cable-bracing inertial system
    图1 拉索式惯容系统示意图Fig.1 Cable-bracing inertial system
    图3 布置拉索式惯容系统的多层结构示意图Fig.3 Multi-story structure equipped with cable-bracing inertial system
    图4 地震动输入功率谱Fig.4 Seismic input power spectra
    图5 惯容系统布置效率示意图(综合指标)Fig.5 Layout efficiency of inerter system (comprehensive index)
    图6 惯容系统布置效率示意图(位移指标)Fig.6 Layout efficiency of inerter system (displacement index)
    图7 惯容系统布置效率示意图(加速度指标)Fig.7 Layout efficiency of inerter system (acceleration index)
    图8 惯容系统的帕累托前沿Fig.8 Pareto front for the inerter system
    图9 惯容系统帕累托前沿的频率比设计最优值Fig.9 Design frequency ratio of Pareto optimal solutions
    图10 惯容系统帕累托前沿的阻尼比设计最优值Fig.10 Design damper ratio of Pareto optimal solutions
    图11 惯容系统帕累托前沿的质量比设计最优值Fig.11 Design mass ratio of Pareto optimal solutions
    图3 布置拉索式惯容系统的多层结构示意图Fig.3 Multi-story structure equipped with cable-bracing inertial system
    图4 地震动输入功率谱Fig.4 Seismic input power spectra
    图5 惯容系统布置效率示意图(综合指标)Fig.5 Layout efficiency of inerter system (comprehensive index)
    图6 惯容系统布置效率示意图(位移指标)Fig.6 Layout efficiency of inerter system (displacement index)
    图7 惯容系统布置效率示意图(加速度指标)Fig.7 Layout efficiency of inerter system (acceleration index)
    图8 惯容系统的帕累托前沿Fig.8 Pareto front for the inerter system
    图9 惯容系统帕累托前沿的频率比设计最优值Fig.9 Design frequency ratio of Pareto optimal solutions
    图10 惯容系统帕累托前沿的阻尼比设计最优值Fig.10 Design damper ratio of Pareto optimal solutions
    图11 惯容系统帕累托前沿的质量比设计最优值Fig.11 Design mass ratio of Pareto optimal solutions
    参考文献
    [1] 王孝然,申永军,杨绍普.接地式三要素型动力吸振器的H优化.动力学与控制学报,2016,14(5):448~453
    [2] 郎君,申永军,杨绍普.半主动控制接地式动力吸振器参数优化及性能比较.动力学与控制学报,2019,17(2):168~177
    [3] McNamara R J. Tuned mass dampers for buildings. ASCE Journal of Structural Engineering,1977, 103(9):1785~1798
    [4] Kaynia A M, Veneziano D, Biggs J M.Seismic effectiveness of tuned mass dampers. ASCE Journal of the Structural Division, 1981, 107(8):1465~1484
    [5] Chen M Z Q, Papageorgiou C, Scheibe F,et al. The missing mechanical circuit element. IEEE Circuits and Systems Magazine, 2009, 9(1):10~26
    [6] Ikago K,Saito K,Inoue N.Seismic control of single-degree-of-freedom structure using tuned viscous mass damper. Earthquake Engineering & Structural Dynamics,2012, 41(3):453~474
    [7] Ikago K, Sugimura Y, Saito K,et al.Modal response characteristics of a multiple-degree-of-freedom structure incorporated with tuned viscous mass dampers. Journal of Asian Architecture and Building Engineering, 2018, 11(2):375~382
    [8] Marian L,Giaralis A.Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems.Probabilistic Engineering Mechanics, 2014, 38:156~164
    [9] Pan C,Zhang R F.Design of structure with inerter system based on stochastic response mitigation ratio. Structural Control and Health Monitoring, 2018, 25(6):e2169
    [10] Taflanidis A A, Giaralis A, Patsialis D. Multi-objective optimal design of inerter-based vibration absorbers for earthquake protection of multi-storey building structures. Journal of the Franklin Institute, 2019,356(14):7754~7784
    [11] Arakaki T,Kuroda H,Arima F,et al. Development of seismic devices applied to ball screw. Part 1: Basic performance test of RD-series. AIJ Journal of Technology and Design, 1999, 5(8):239~244
    [12] Pan C, Zhang R F, Luo H,et al. Demand-based optimal design of oscillator with parallel-layout viscous inerter damper. Structural Control and Health Monitoring, 2018, 25(1):e2051
    [13] Kanai K.Semi-empirical formula for the seismic characteristics of the ground. Bulletin of the Earthquake Research Institute, 1957, 35: 309~325
    [14] Lutes L D, Sarkani S. Stochastic analysis of structural and mechanical vibrations. New Jersey: Prentice Hall, 1997
    相似文献
    引证文献
引用本文

薛松涛,康建飞,谢丽宇.用于结构减震控制的拉索式惯容系统跨层布置优化研究[J].动力学与控制学报,2020,18(5):72~78; Xue Songtao, Kang Jianfei, Xie Liyu. STUDY ON OPTIMIZATION OF CROSS-LAYER CABLE-BRACING INERTER SYSTEM FOR STRUCTURAL SEISMIC RESPONSE CONTROL[J]. Journal of Dynamics and Control,2020,18(5):72-78.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-09-05
  • 最后修改日期:2019-11-18
  • 录用日期:2020-09-29
  • 在线发布日期: 2020-11-24
文章二维码

微信公众号二维码

手机版网站二维码