面向非线性轨道车辆动力学的广义多步显式积分算法应用*
CSTR:
作者:
作者单位:

北京交通大学 机械与电子控制工程学院, 北京 100044

作者简介:

E-mail:ychao@bjtu.edu.cnE-mail:ychao@bjtu.edu.cn


APPLICATION OF A GENERALIZED MULTI-STEP EXPLICIT INTEGRATION METHOD TO NONLINEAR RAIL VEHICLE DYNAMICS*
Affiliation:

School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了改善计算效率,在非线性轨道车辆动力学仿真中引入广义多步显式积分算法.针对非线性系统将算法改造为增量格式.列车动力学模型由轨道车辆模型和钩缓装置模型等组成.采用增量格式的广义多步显式积分算法分别研究列车连挂冲击和列车中低速碰撞问题.研究结果表明:广义多步显式积分算法在测试的算例中具有良好的稳定性,其计算速度约为龙格库塔法的3.8倍.干摩擦式钩缓装置模型在过渡状态存在车钩锁死现象.由于车钩锁死列车撞击过程中会出现车体加速度的高频振荡.广义多步显式积分算法可以适用于非线性轨道车辆动力学仿真.

    Abstract:

    A generalized multi-step explicit integration method (GMEM) was used to improve the computational efficiency for nonlinear rail vehicle dynamics. The increment formulation of the explicit integration algorithm was developed for nonlinear systems. The train dynamic model consisting of the vehicle and couplers, etc., was established. Both the coupling impacts and the medium- and low-speed collisions of the vehicles were studied by using the GMEM. The results indicated that the GMEM is endowed with good stability in the testing examples. The computational speed of the GMEM is approximately 3.8 times of that of the Runge-Kutta method. The locking phenomenon occurs in the transition stage for the dry friction coupler model. The carbody acceleration oscillates with high frequencies due to the locked state in the train impact. Therefore, the GMEM is appropriate for the simulation of the nonlinear rail vehicle dynamics.

    表 3 中间钩缓装置模型参数Table 3 Parameters of the middle coupler model
    图1 算法执行过程Fig.1 Implementation process of the method
    图3 轨道车辆模型Fig.3 Rail vehicle model
    表 1 算法的加权系数Table 1 Weighted coefficient for the method
    表 4 算法消耗时间对比Table 4 Comparison of consumed time of algorithms
    表 2 头车钩缓装置模型参数Table 2 Parameters of the leading coupler model
    图2 列车模型Fig.2 Train model
    图4 车钩力-位移响应Fig.4 Response of coupler forces versus displacements
    图5 车体速度时间历程Fig.5 Velocity time history of carbodies
    图6 头车的加速度时间历程Fig.6 Acceleration time history of leading vehicles
    参考文献
    相似文献
    引证文献
引用本文

杨超,李强,王曦.面向非线性轨道车辆动力学的广义多步显式积分算法应用*[J].动力学与控制学报,2020,18(3):51~55; . APPLICATION OF A GENERALIZED MULTI-STEP EXPLICIT INTEGRATION METHOD TO NONLINEAR RAIL VEHICLE DYNAMICS*[J]. Journal of Dynamics and Control,2020,18(3):51-55.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-05-14
  • 最后修改日期:2020-05-14
  • 录用日期:2020-05-14
  • 在线发布日期: 2020-06-30
文章二维码

微信公众号二维码

手机版网站二维码