双曲型守恒律的一种三阶松弛格式
作者:

A thirdorder relaxation scheme for hyperbolic conservation laws
  • 摘要
  • | |
  • 访问统计
  • | |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    对一维双曲型守恒律,给出了一种形式更简单、计算量更小的三阶松弛格式.该格式以三阶WENO重构和三阶显隐式RungeKutta方法为基础.由于不用求解Riemann问题和计算非线性通量函数的雅可比矩阵,所以本文格式保持了松弛格式简单的优点.数值试验表明:该方法具有较高的分辨率.

    Abstract:

    A new thirdorder relaxation scheme for hyperbolic conservation laws was presented, which combined thirdorder WENO reconstruction for spatial discretization with thirdorder implicitexplicit RungeKutta method for time discretization. The new scheme is much simpler and less computationally expensive than the original one. The resulting scheme does not require Riemann solvers and the computation of Jacobians, so it remains the advantages of relaxation schemes. The new scheme was tested on several numerical examples, and the results showed it had high resolution.

    参考文献
    引证文献
引用本文

陈建忠,史忠科.双曲型守恒律的一种三阶松弛格式[J].动力学与控制学报,2007,5(4):289~292; Chen Jianzhong, Shi Zhongke. A thirdorder relaxation scheme for hyperbolic conservation laws[J]. Journal of Dynamics and Control,2007,5(4):289-292.

复制
分享
文章指标
  • 点击次数:785
  • 下载次数: 887
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2006-06-30
  • 最后修改日期:2006-10-18
文章二维码

微信公众号二维码

手机版网站二维码