保守系统中非线性振动问题的数值解法
作者:

Numerical solution of nonlinear vibration problem in conservation system
  • 摘要
  • | |
  • 访问统计
  • | |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在本文中,用目标函数方法寻求保守系统中非线性振动问题的解.文中以摆的运动作为例子, 对相关的微分方程在初位移不为零又初速度为零条件下在时间上进行积分.此时,速度为时间的函数, 把此 函数 称为目标函数. 因为摆从右侧到左侧再回到右侧完成一个周期, 从而此目标函数的第二个零点便是运动的周期.此外,在数值积分过程中, 同时得到了位移函数.此法依赖于常微分方程的数值解法和找函数零点的对分法.某些其它非线性常微分方程的解也得到研究.最后,文中给出了一些例子和数值结果.

    Abstract:

    Solution of the nonlinear vibration in conservation system by using the target function method is studied in this paper. The motion of pendulum is taken as an example problem. The relevant governing equation is integrated on the variable for time with the vanishing initial velocity and non-vanishing initial displacement. In this case, the velocity is a function of time, and it is in turn called the target function. Since the pendulum completes a periodic motion from the right side to the left side and then to the right side, the second zero of the target function becomes the period of the motion. In addition, in the time of numerical integration the displacement is also obtained. The suggested method depends on the numerical integration of the ordinary differential equation and the half-division technique for finding the zeros of a function. Solutions for some nonlinear differential equations are also evaluated. Finally, numerical examples and results are given.

    参考文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈宜周.保守系统中非线性振动问题的数值解法[J].动力学与控制学报,2004,2(4):9~13; Chen Yizhou. Numerical solution of nonlinear vibration problem in conservation system[J]. Journal of Dynamics and Control,2004,2(4):9-13.

复制
分享
文章指标
  • 点击次数:290
  • 下载次数: 961
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2004-04-21
  • 最后修改日期:2004-10-16
文章二维码

微信公众号二维码

手机版网站二维码