新光滑多翅膀混沌系统研究*

李文静^{1,2} 贾美美^{1,2†}

(1.内蒙古工业大学电力学院,呼和浩特010080)(2.内蒙古自治区机电控制重点实验室,呼和浩特010051)

摘要 针对光滑多翅膀混沌系统不易于构造的问题,基于光滑代数函数提出两个新光滑多分段非线性函数, 并用新光滑多分段非线性函数构造了新光滑单方向多翅膀S-M混沌系统和新光滑二方向网格多翅膀S-M混 沌系统.然后,分析了两个新光滑多翅膀混沌系统的非线性动力学行为,主要包括相图、平衡点、不变性、耗散 性、李亚普诺夫指数、分维数和庞加莱截面,并得到了多翅膀混沌吸引子的产生机理.其产生机理为指标2鞍 焦平衡点用于产生翅膀.此外,通过单方向多翅膀S-M混沌吸引子和二方向网格多翅膀S-M混沌吸引子的电 路实现,验证了理论推导和数值仿真的正确性.

关键词 非线性动力学行为, 多翅膀混沌系统, 代数函数, 多分段非线性函数, 电路实现 DOI: 10.6052/1672-6553-2020-072

引言

1963年, Lorenz 提出了 Lorenz 混沌系统, 其混 沌吸引子的拓扑结构与蝴蝶的形状十分相似,是一 种双翅膀混沌系统,该系统的提出掀起了混沌研究 的热潮[1]. 混沌在保密通信[2-5]、图像加密[6-8]等领域 具有良好的应用前景.为了将混沌更好地应用于保 密通信,人们长期致力于研究具有复杂拓扑结构和 丰富动力学行为的混沌系统,例如单方向多翅膀混 沌系统和多方向网格多翅膀混沌系统.由于单方向 多翅膀混沌系统和多方向网格多翅膀混沌系统具 有多个可调参数,即数量众多的翅膀能在相空间中 呈现单个方向分布甚至多个方向分布的网格状图 案,各个翅膀之间具有互相嵌套的拓扑结构,翅膀 的数量、大小及网格状分布的图像可以由可调参数 来进行调节,具有更复杂的动力学行为.这种复杂 性体现在混沌吸引子的相轨迹或状态变量的取值 能在多个翅膀之间随机的跳变,从而使得当翅膀的 数量越多时,这种跳变的随机性就越大,更有利于 混沌加密^[9,10].因此,基于双翅膀混沌系统构造多翅 膀混沌系统具有重要意义.

2008年,Yu等^[11]采用符号函数基于广义双翅膀Shimizu-Morioka(S-M)混沌系统构造了单方向多翅膀混沌系统和二方向网格多翅膀混沌系

统.2010年,Yu等^[12]采用符号函数基于广义双翅膀 S-M混沌系统、双翅膀Lu混沌系统、双翅膀Chen 混沌系统、双翅膀Sprott-1混沌系统和双翅膀 Sprott-2混沌系统构造了相应的单方向多翅膀混沌 系统.2012年,周欣等^[13]采用符号函数基于广义双 翅膀Lorenz混沌系统构造了二方向网格多翅膀混 沌系统.2015年,Huang等^[14]采用分段时滞函数基 于双翅膀Lorenz混沌系统构造了二方向网格多翅 膀混沌系统.2016年,孙克辉等^[15]采用符号函数基 于简化双翅膀Lorenz混沌系统构造了二方向网格 多翅膀混沌系统.2018年,Zhang等^[16]采用锯齿波 函数和阶梯函数基于提出的双翅膀混沌系统构造 了二方向网格多翅膀混沌系统.2018年,Yu等^[17]采 用阶梯切换函数基于双翅膀Lorenz混沌系统构造

2016年,Zhou等^[18]采用符号函数与光滑磁控 忆阻器基于改进的双翅膀Lü混沌系统构造了单 方向多翅膀混沌及超混沌系统.文献[19-21]也报 道了如何采用忆阻器来构造多翅膀混沌及超混沌 系统.文献[11-17]采用的符号函数、分段时滞函 数、锯齿波函数、阶梯函数、阶梯切换函数都是非 光滑函数,其构造的多翅膀混沌或超混沌系统都 是非光滑系统.然而,构造光滑多翅膀混沌系统和 超混沌系统更加具有挑战性^[19].那么,是否可以采

²⁰²⁰⁻⁰⁴⁻¹⁹ 收到第1稿, 2020-06-30 收到修改稿.

^{*} 内蒙古自治区自然科学基金资助项目(2017BS0603)

[†]通讯作者 E-mail: meimeijia14@163.com

用光滑非线性函数基于光滑双翅膀混沌系统构造 光滑多翅膀混沌系统?本文将给出明确的答案.

自 1980年, Shimizu 和 Morioka^[22]提出双翅膀 S-M 混沌系统以来,目前鲜有文献报道基于双翅膀 S-M 混沌系统构造光滑多翅膀 S-M 混沌系统问题. 需要注意的是:双翅膀 S-M 混沌系统是光滑系统; 本文采用的代数函数是光滑非线性函数;本文构造 的新单方向多翅膀 S-M 混沌系统和新二方向网格 多翅膀 S-M 混沌系统都是光滑系统.

本文首先以双翅膀 S-M 混沌系统为基础,基 于代数函数提出了两个新多分段非线性函数 $f_N(x)$ 和 $f_M(z)$.然后,通过采用非线性函数 $f_N(x)$ 代替双 翅膀 S-M 混沌系统中的平方项,构造出新单方向 多翅膀 S-M 混沌系统.通过采用多分段非线性函 数 $f_M(z)$ 代替新单方向多翅膀 S-M 混沌系统中的 状态变量z,构造出新二方向网格多翅膀 S-M 混沌系统 和新二方向网格多翅膀 S-M 混沌系统的非线性动 力学行为,并得到了新单方向多翅膀 S-M 混沌系统 引子和新二方向网格多翅膀 S-M 混沌系统的非线性动 力学行为,并得到了新单方向多翅膀 S-M 混沌吸 引子和新二方向网格多翅膀 S-M 混沌吸引子的产 生机理.其产生机理为指标2 鞍焦平衡点用于产 生翅膀.同时,对上述系统进行了电路实现.

1 单方向多翅膀 S-M 混沌系统的构造

首先引入代数函数,如式(1)所示

$$g(x) = \frac{x}{\sqrt{d+x^2}} \tag{1}$$

随着参数值d的变化, $g(x) \in [-1,1]$.当d = 1时,代数函数g(x)变为具体的代数函数^[23].图1表示参数d取不同值时代数函数g(x)的曲线.基于代数函数g(x),构造多分段非线性函数 $f_x(x)$,可表示为

$$f_N(x) = F_0 \cdot x^2 - 3.55 - \sum_{i=1}^{N} F_i \cdot [g(x - E_i) - g(x + E_i) + 2]$$
(2)

其中, $F_0 = 2$, $F_i = 2 \cdot E_i$, $E_i = i + 1.2$,i = 1, 2, ..., N(N < 4),N为正整数. $g(\cdot)$ 由式(1)定义,其中d = 0.001.经典双翅膀S-M混沌系统^[11]可表示为

$$\begin{cases} \dot{x} = y \\ \dot{y} = (1 - z) \cdot x - a \cdot y \\ \dot{z} = x^2 - b \cdot z \end{cases}$$
(3)

其中,a=0.75,b=0.45是参数.x,y和z是状态变量.

为了构造单方向多翅膀 S-M 混沌系统,用多分段非线性函数 f_N(x)代替双翅膀 S-M 混沌系统

(3) 中的 x² 项, 可得单方向多翅膀 S-M 混沌 系统(4).

$$\begin{cases} \dot{x} = y \\ \dot{y} = (1 - z) \cdot x - a \cdot y \\ \dot{z} = f_N(x) - b \cdot z \end{cases}$$
(4)

单方向多翅膀S-M混沌系统(4)可以产生4翅膀S-M混沌吸引子,6翅膀S-M混沌吸引子和8翅膀S-M混沌吸引子和8翅膀S-M混沌吸引子在8000 s,4翅膀S-M混沌吸引子在*x-z*平面的相图如图2所示.4翅膀S-M混沌吸引子的Multisim电路实现结果如图3所示.对比图2和图3可知,电路实现结果与数值仿真结果一致.其他单方向多翅膀S-M混沌吸引子的电路实现结果也与对应的数值仿真结果一致,这里不再给出.

2 单方向多翅膀S-M混沌系统的非线性动 力学行为分析

2.1 单方向多翅膀 S-M 混沌吸引子的平衡点

Fig.2 Phase diagrams of the 4-wing S-M chaotic attractor in the x-z plane

生机理, 对平衡点 $Q_{\pm n}(x_{\pm n}, y_{\pm n}, z_{\pm n})$ 进行分析. 令此 混沌系统(4)中的 $\dot{x} = \dot{y} = \dot{z} = 0$, 可得

$$\begin{cases} \dot{x} = y = 0\\ \dot{y} = (1 - z) \cdot x - a \cdot y = 0\\ \dot{z} = f_N(x) - b \cdot z = 0 \end{cases}$$
(5)

由式(5)可得

$$\begin{cases} y_{\pm n} = 0 \\ z_{\pm n} = 1 \\ f_N(x_{\pm n}) = b \cdot z_{\pm n} \end{cases}$$
(6)

根据式(6)可得单方向多翅膀 S-M 混沌系统(4)的 平衡点 $Q_{\pm n}(x_{\pm n}, y_{\pm n}, z_{\pm n}), n = 0, 1, 2, ..., N.$ 图 4 表示 当 N = 2时的多分段非线性函数 $f_N(x)$.可以看到在 x轴方向上有6个交点 $(x_{\pm 0}, x_{\pm 1} \pi x_{\pm 2})$,在图中用'·' 表示.这6个交点可产生6个翅膀.

图4 当N = 2时,多分段非线性函数 $f_{y}(x)$ Fig.4 Multisegment nonlinear function $f_{y}(x)$ with N = 2

6 翅膀 S-M 混沌吸引子的平衡点 $Q_{in}(x_{in}, y_{in}, z_{in})$ 和特征值 λ ,如表1所示.由表1可知,特征值 λ 有一个负实根和一对实部为正的共轭复根.这表明 平衡点(Q_{i0}, Q_{i1} 和 Q_{i2})为指标2^[9]鞍焦平衡点.每个 指标2鞍焦平衡点可产生一个相对应的翅膀,因此 6个指标2鞍焦平衡点可产生6个翅膀.

2.2 单方向多翅膀 S-M 混沌吸引子的不变性和 耗散性

单方向多翅膀 S-M 混沌系统(4)在

表 1 6 翅膀 S-M 混沌吸引子的平衡点 $Q_{\pm n}(x_{\pm n}, y_{\pm n}, z_{\pm n})$ 和 特征值 λ

Table 1 Equilibrium $Q_{\pm n}(x_{\pm n}, y_{\pm n}, z_{\pm n})$ and eigenvalues λ of the 6-wing S-M chaotic attractor

$Q_{\pm n}(x_{\pm n},\!y_{\pm n},\!z_{\pm n})$	λ
$Q_{_{\pm 0}}(\pm 1.4151,0,1)$	-2.4228, 0.6114 ± i1.7107
$Q_{_{\pm 1}}(\pm 2.4698,0,1)$	-3.3481, 1.0741 ± i2.5251
$Q_{_{\pm 2}}(\pm 4.5044,\!0,\!1)$	-4.1143, 1.4572 ± i3.1945

 $(x, y, z) \rightarrow (-x, -y, z)$ 的变换下保持不变,即单方向 多翅膀S-M混沌系统(4)关于z轴对称.通过体积 $V = [\dot{x}, \dot{y}, \dot{z}]$ 的散度来计算单方向多翅膀S-M混沌 系统(4)的耗散性,即

$$\nabla V = \frac{\partial \dot{x}}{\partial x} + \frac{\partial \dot{y}}{\partial y} + \frac{\partial \dot{z}}{\partial z} = -a - b = -1.2 < 0 \quad (7)$$

因此,单方向多翅膀S-M混沌系统(4)是耗散的.

2.3 单方向多翅膀S-M混沌吸引子的李亚普诺 夫指数、分维数和庞加莱截面

本节以6翅膀S-M混沌吸引子为例来研究李亚 普诺夫指数、分维数和庞加莱截面.当初值为 (1,1,1),仿真时间为3000 s,6翅膀S-M混沌吸引子 的李亚普诺夫指数如图5所示.该图中有一个正的 指数LE₁,这表明单方向多翅膀S-M混沌系统(4)是 混沌的.由LE₁ = 0.348291,LE₂ = 0.002137和LE₃ = -1.550427,可计算分维数^[9] D_L = 2.226020.可知分 维数是介于2和3之间的一个分数值,这表明单方 向多翅膀S-M混沌系统(4)是混沌的.

图 6 6翅膀 S-M 混沌吸引子的庞加莱截面 Fig.6 Poincaré section of the 6-wing S-M chaotic attractor

由图6可知,6翅膀S-M混沌吸引子的庞加莱 截面由成片密集点组成,这表明单方向多翅膀S-M 混沌系统(4)是混沌的.

3 二方向网格多翅膀S-M混沌系统的构造

本节利用代数函数g(x)构造多分段非线性函数f_M(z),并利用多分段非线性函数f_M(z),并利用多分段非线性函数f_M(z)构造二方向网格多翅膀S-M混沌系统.此系统能产生二方向网格多翅膀S-M混沌吸引子.利用代数函数g(x)构造多分段非线性函数f_M(z),其可以表示为

$$f_{M}(z) = z + 1 - G_{0} \cdot \{g(z) + [g(z - U_{i}) + g(z + U_{i})]\}$$
(8)

其中, $G_0 = 1.5$, $U_i = 2iG_0$,i = 1, 2, ..., M(M < 2),M 为整数. $g(\cdot)$ 由式(1)定义,其中d = 0.001.用多分 段非线性函数 $f_M(z)$ 代替单方向多翅膀S-M 混沌系 统(4)中的状态变量z,可得二方向网格多翅膀S-M 混沌系统(9).

$$\begin{cases} \dot{x} = y \\ \dot{y} = [1 - f_M(z)] \cdot x - a \cdot y \\ \dot{z} = f_N(x) - b \cdot f_M(z) \end{cases}$$
(9)

其中,a = 0.75,b = 0.45 是系统参数. $f_N(x) 和 f_M(z)$ 分別由式(2)和式(8)定义. $(2N + 2) \times (2M + 2)$ 网 格多翅膀S-M混沌系统在x-z平面的相图如图7所 示.图7(a),7(b)和7(c)分别表示当N = 1,2,3, M = 0时, $4 \times 2,6 \times 2$ 和 8×2 网格多翅膀S-M混 沌吸引子的相图.图7(d),7(e)和7(f)表示当N =1,2,3,M = 1时, $4 \times 4,6 \times 4$ 和 8×4 网格多翅膀S-M混 S-M混沌吸引子的相图.

 $(a)4 \times 2 网格多翅膀S-M 混沌吸引子(N = 1, M = 0)$ $(a)4 \times 2$ -grid multi-wing S-M chaotic attractor (N = 1, M = 0)

(b)6×2网格多翅膀S-M混沌吸引子(N=2,M=0) (b)6×2-grid multi-wing S-M chaotic attractor(N=2,M=0)

(c)8×2网格多翅膀S-M混沌吸引子(N=3,M=0) (c)8×2-grid multi-wing S-M chaotic attractor(N=3,M=0)

 $(d)4 \times 4 网格多翅膀 S-M 混沌吸引子(N = 1, M = 1)$ $(d)4 \times 4$ -grid multi-wing S-M chaotic attractor(N = 1, M = 1)

 $(e)6 \times 4 网格多翅膀S-M 混沌吸引子(N = 2, M = 1)$ $(e)6 \times 4$ -grid multi-wing S-M chaotic attractor(N = 2, M = 1)

(f)8×4网格多翅膀S-M混沌吸引子(N = 3, M = 1) (f)8×4-grid multi-wing S-M chaotic attractor(N = 3, M = 1)

图7 (2N + 2)×(2M + 2)网格多翅膀S-M混沌吸引子在*x-z* 平面的相图

Fig.7 Phase diagrams of the $(2N + 2) \times (2M + 2)$ -grid multi-wing S-M chaotic attractors in the *x-z* plane

4×2网格多翅膀S-M混沌吸引子的Multisim 电路实现结果如图8所示.对比图7(a)和图8可

Fig.8 Circuit implementation of the 4 \times 2-grid multi-wing S-M chaotic attractor

知,电路实现结果与数值仿真结果一致.其他二方向网格多翅膀S-M混沌吸引子的电路实现结果也与对应的数值仿真结果一致,这里不再给出.

4 二方向网格多翅膀S-M混沌吸引子的非 线性动力学行为分析

4.1 二方向网格多翅膀 S-M 混沌吸引子的平衡 点、不变性和耗散性

本节通过分析平衡点 $Q_{\pm n,\pm m}(x_{\pm n}, y_{\pm n}, z_{\pm m})$ 来研 究二方向网格多翅膀 S-M 混沌系统的产生机理. 令二方向网格多翅膀 S-M 混沌系统(9)中 $\dot{x} = \dot{y} = \dot{z} = 0,$ 可得

$$\begin{cases} \dot{x} = y = 0\\ \dot{y} = [1 - f_M(z)] \cdot x - a \cdot y = 0\\ \dot{z} = f_N(x) - b \cdot f_M(z) = 0 \end{cases}$$
(10)

由式(10)可得

$$\begin{cases} y_{\pm n} = 0\\ f_M(z_{\pm m}) = 1\\ f_N(\gamma_{\pm n}) = b \cdot f_M(z_{\pm m}) \end{cases}$$
(11)

由式(11)得到二方向网格多翅膀 S-M 混沌系统 (9)的平衡点 $Q_{\pm n,\pm m}(x_{\pm n}, y_{\pm n}, z_{\pm m}), n = 0, 1, 2, ..., N,$ m = 0, 1, 2, ..., M. 图9表示当M = 1时的多分段非 线性函数 $f_M(z)$.可以看到在z轴方向上有4个交点 $(z_{\pm 0} 和 z_{\pm 1}),$ 在图中用'·'表示.这4个交点可产生4 个翅膀.

Fig.9 Multisegment nonlinear function $f_M(z)$ with M = 1

 6×4 网格多翅膀 S-M 混沌吸引子的平衡点 $Q_{\pm n,\pm m}(x_{\pm n}, y_{\pm n}, z_{\pm m})$ 和特征值 λ ,如表2所示.由表2 可知,特征值 λ 有一个负实根和一对实部为正的共 轭复根.这表明平衡点 $(Q_{\pm 0,\pm 0}, Q_{\pm 1,\pm 0}, Q_{\pm 2,\pm 0}, Q_{\pm 0,\pm 1}, Q_{\pm 1,\pm 1}, Q_{\pm 2,\pm 1})$ 为指标2^[9]鞍焦平衡点.每个指标2鞍 焦平衡点可产生一个相对应的翅膀,因此24个指标2鞍焦平衡点可产生24个翅膀.

表2 6×4网格多翅膀S-M混沌吸引子的平衡点

 $Q_{\pm n,\pm m}(x_{\pm n},y_{\pm n},z_{\pm m})$ 和特征值 λ

Table 2 Equilibrium $Q_{\pm n,\pm m}(x_{\pm n},y_{\pm n},z_{\pm m})$ and eigenvalues λ of the 6 × 4-grid multi-wing S-M chaotic attractor

$Q_{\pm n,\pm m}(x_{\pm n},\!y_{\pm n},\!z_{\pm m})$	λ
$Q_{\pm 0,\pm 0}(\pm 1.4151,0,\pm 1.5)$	$-2.4221, 0.6113 \pm i1.7101$
$Q_{\pm 1, \pm 0}(\pm 2.5285, 0, \pm 1.5)$	-3.3471, 1.0738 ± i2.5243
$Q_{\pm 2,\pm 0}(\pm 3.5761,0,\pm 1.5)$	-4.1131, 1.4568 ± i3.1935
$Q_{\pm 0,\pm1}(\pm1.4151,\!0,\pm4.4996)$	-2.4224, 0.6113 ± i1.7104
$Q_{\pm 1,\pm1}(\pm 2.5285,\!0,\pm4.4996)$	-3.3476, 1.0739 ± i2.5247
$Q_{\pm 2,\pm1}(\pm 3.5761,\!0,\pm4.4996)$	-4.1137, 1.4569 ± i3.1940

二方向网格多翅膀 S-M 混沌系统(9)的不变 性和耗散性计算方法与单方向多翅膀 S-M 混沌系 统(4)相同,这里不再详细讨论.

4.2 二方向网格多翅膀 S-M 混沌吸引子的李亚 普诺夫指数、分维数和庞加莱截面

本节以6×4网格多翅膀S-M混沌吸引子为例 来分析李亚普诺夫指数、分维数和庞加莱截面.当 初值为(1,1,1),仿真时间为3000 s,6×4网格多翅 膀S-M混沌系统的李亚普诺夫指数如图10所示. 该图中显然存在一个正的李亚普诺夫指数LE₁,这 表明二方向网格多翅膀S-M混沌系统(9)是混沌 的.由LE₁ = 0.453331, LE₂ = -0.020405 和 LE₃ = -1.567040,可计算分维数^[9] D_L = 2.276269.可知分 维数是介于2和3之间的一个分数值,这表明二方 向网格多翅膀S-M混沌系统(9)是混沌的.

Fig.11 Poincaré section of the 6 × 4-grid multi-wing S-M chaotic attractor

5 动力学行为演变方向及复杂度分析

以 6 翅膀 S-M 混沌系统 ($a = 0.75, b \in [0, 2]$) 为例,分析李亚普诺夫指数如图 12 所示及分岔图 如图 13 所示.从图 12-图 13 可知,随着参数 b 的变 化,6 翅膀 S-M 混沌系统由混沌态 ($0 \le b < 1$) 演变 为周期态 ($1 \le b \le 2$).

对经典双翅膀 S-M 混沌系统(3)、单方向多翅 膀 S-M 混沌系统(4)以及二方向网格多翅膀 S-M 混沌系统(9),分别从 SE复杂度^[24]的最大值和平均 值进行比较分析,结果如表3所示.由表3可知,对 于二方向网格多翅膀 S-M 混沌系统(9),SE复杂度 的平均值比经典双翅膀 S-M 混沌系统(3)、单方向 多翅膀 S-M 混沌系统(4)的大.对于单方向多翅膀 S-M 混沌系统(4),SE复杂度的最大值和平均值比 经典双翅膀 S-M 混沌系统(3)的大.由此可知对经 典双翅膀 S-M 混沌系统(3)多翅膀化后,所得单方 向多翅膀 S-M 混沌系统(4)以及二方向网格多翅

Fig.13 Bifurcation diagram

勝 S-M 混沌系统(9)复杂度增加.需要注意的是, 复杂度特性对比研究中,单方向多翅膀 S-M 混沌 系 统 (4) 以 6 翅 膀 S-M 混 沌 系 统 (a = 0.75, $b \in [0,2]$)为例,二方向网格多翅膀 S-M 混沌系统 (9)以 6×4 网格多翅膀 S-M 混沌系统(a = 0.75, $b \in [0,2]$)为例.

表3 S-M 混沌系统(3),(4),(9)复杂度特性对比

Table 3 Comparison of complexity characteristics of S-M chaotic systems (3), (4), (9)

S-M chaotic system	$\mathrm{SE}_{\mathrm{max}}$	SE
Double-wing S-M chaotic system (3)	0.6167	0.1957
One–direction multi–wing S–M chaotic system (4)	0.8634	0.3178
Two-direction grid multi-wing S-M chaotic system (9)	0.8593	0.4031

6 结论

本文基于光滑代数函数构造了两个新光滑多 分段非线性函数f_N(x)和f_M(z).然后,采用这两个新 光滑多分段非线性函数构造了新光滑单方向多翅 膀S-M混沌系统和新光滑二方向网格多翅膀S-M 混沌系统.翅膀的个数由指标2鞍焦平衡点的个数 来确定.需要说明的是,该光滑代数函数也可以被 用于构造其他新光滑多分段非线性函数.此外,本 文构造的新光滑单方向多翅膀S-M混沌系统和新 光滑二方向网格多翅膀S-M混沌系统可应用于保 密通信,图像加密等领域.

文 献 考

 Lorenz E N. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 1963, 20:130~141

- 2 李雄杰,周东华.一种基于强跟踪滤波的混沌保密通信 方法.物理学报,2015,64(14):140501(Li X J,Zhou D H. A method of chaotic secure communication based on strong tracking filter. *Acta Physica Sinica*,2015,64(14): 140501(in Chinese))
- 3 Changchien S K, Huang C K, Nien H H, et al. Synchronization of the chaotic secure communication system with output state delay. *Chaos*, *Solitons and Fractals*, 2009, 39:1578~1587
- 4 颜森林.激光混沌并行串联同步及其在中继器保密通 信系统中的应用.物理学报,2019,68(17):170502 (Yan S L. Chaotic laser parallel series synchronization and its repeater applications in secure communication. Acta Physica Sinica,2019,68(17):170502(in Chinese))
- 5 Liu S Q, Jiang N, Zhao A K, et al. Secure optical communication based on cluster chaos synchronization in semiconductor lasers network. *IEEE Access*, 2020, 8: 11872~ 11879
- 6 庄志本,李军,刘静漪,等.基于新的五维多环多翼超混 沌系统的图像加密算法.物理学报,2020,69(4): 040502(Zhuang Z B, Li J, Liu J Y, et al. Image encryption algorithm based on new five-dimensional multi-ring multiwing hyperchaotic system. *Acta Physica Sinica*, 2020, 69 (4):040502(in Chinese))
- 7 石航,王丽丹.一种基于压缩感知和多维混沌系统的多 过程图像加密方案.物理学报,2019,68(20):200501 (Shi H, Wang L D. Multi-process image encryption scheme based on compressed sensing and multi-dimensional chaotic system. *Acta Physica Sinica*,2019,68(20): 200501(in Chinese))
- 8 李桂珍,任晓芳.基于 DNA 合成图像和混沌映射的图像加密算法.控制工程,2018,25(7):1278~1284(Li GZ, Ren XF.Research of image encryption algorithm based on DNA image synthesis and chaotic mapping. *Control Engineering of China*, 2018, 25(7):1278~1284 (in Chinese))
- 9 禹思敏.混沌系统与混沌电路:原理,设计及其在通信中的应用.西安:西安电子科技大学出版社,2011(Yu S M. Chaotic systems and chaotic circuits: Principle, design and its application in communications. Xi'an:Xi'an Electronic Science & Technology University Press, 2011 (in Chinese))
- 10 Zhang C X, Yu S M. A novel methodology for constructing a multi-wing chaotic and hyperchaotic system with a unified step function switching control. *Chinese Physics B*, 2016,25(5):050503-1~050503-14
- 11 Yu S M, Tang W K S, Lv J H, et al. Generation of n×mwing Lorenz-like attractors from a modified Shimizu-Morioka model. *IEEE Transactions on Circuits and Systems-II*:

Express Briefs, 2008, 55(11): 1168~1172

- 12 Yu S M, Tang W K S, Lv J H, et al. Generating 2n-wing attractors from Lorenz-like systems. *International Journal of Circuit Theory and Applications*, 2010, 38;243~258
- 13 周欣,王春华,郭小蓉.一个新的网格多翅膀混沌系统及其电路实现.物理学报,2012,61(20):200506(Zhou X, Wang C H, Guo X R. A new grid multi-wing chaotic system and its circuit implementation. *Acta Physica Sinica*,2012,61(20):200506(in Chinese))
- 14 Huang Y, Zhang P, Zhao W F. Novel grid multiwing butterfly chaotic attractors and their circuit design. IEEE Transactions on Circuits and Systems-II: Express Briefs, 2015,62(5):496~500
- 15 孙克辉,傅元理.简化Lorenz系统多翅膀混沌吸引子的设计与电路实现.动力学与控制学报,2016,14(5): 395~400(Sun K H, Fu Y L. Design and circuit implementation of the simplified Lorenz multi-wing chaotic attractor. *Journal of Dynamics and Control*,2016,14(5):395~ 400(in Chinese))
- 16 Zhang S, Zeng Y C, Li Z J, et al. A novel grid multiwing chaotic system with only non-hyperbolic equilibria. *Pra*mana: Journal of Physics, 2018, 90(5):63~71
- 17 Yu N, Wang Y W, Liu X K, et al. 3D grid multi-wing chaotic attractors. International Journal of Bifurcation and Chaos, 2018, 28(4):1850045
- 18 Zhou L, Wang C H, Zhou L L. Generating hyperchaotic

multi-wing attractor in a 4D memristive circuit. *Nonlinear Dynamics*, 2016, 85:2653~2663

- 19 Zhou L, Wang C H, Zhou L L. Generating four-wing hyperchaotic attractor and two-wing, three-wing, and four-wing chaotic attractors in 4D memristive system. *International Journal of Bifurcation and Chaos*, 2017, 27(2):1750027
- 20 Zhou L, Wang C H, Zhou L L. A novel no-equilibrium hyperchaotic multi-wing system via introducing memristor. International Journal of Circuit Theory and Applications, 2018,46:84~98
- 21 Hu X Y, Liu C X, Liu L. Multi-scroll hidden attractors and multi-wing hidden attractors in a 5-dimensional memristive system. *Chinese Physics B*, 2017, 26(11):110502
- Shimizu T, Morioka N. On the bifurcation of an asymmetric one in a simple model. *Physics Letters A*, 1980, 76(3-4):201~204
- 23 Nattagit J, Tachibana M, Wimol S U. Robustification of a one-dimensional generic sigmoidal chaotic map with application of true random bit generation. *Entropy*, 2018, 20 (136):1~15
- 24 孙克辉,贺少波,何毅,等.混沌伪随机序列的谱熵复杂 性分析.物理学报,2013,62(1):010501(Sun K H, He S B, He Y, et al. Complexity analysis of chaotic pseudorandom sequences based on spectral entropy algorithm. *Acta Physica Sinica*,2013,62(1):010501(in Chinese))

RESEARCH OF A NOVEL SMOOTH MULTI-WING CHAOTIC SYSTEM *

Li Wenjing^{1,2} Jia Meimei^{1,2†}

(1.College of Electric Power, Inner Mongolia University of Technology, Hohhot, 010080 China) (2.Key Laboratory of Electromechanical Control in Inner Mongolia Autonomous Region, Hohhot, 010051 China)

Abstract It is difficult to construct smooth multi-wing chaotic systems. This paper proposes two novel smooth multisegment nonlinear functions based on a smooth algebraic function, and constructs two new chaotic systems, e.g., a one-direction multi-wing S-M one and a two-direction grid multi-wing S-M one, by using the proposed multisegment nonlinear functions. Then, the nonlinear dynamic behaviors of two smooth multi-wing chaotic systems are analyzed, with phase diagrams, equilibrium points, invariance, dissipation, Lyapunov exponents, fractal dimension, Poincaré section, and the generation mechanism of the multi-wing chaotic attractors being obtained. The generation mechanism is that the saddle-focus equilibrium points with index 2 are responsible for generating wings. In addition, the circuit implementations of the one-direction multi-wing S-M chaotic attractors and the two-direction grid multi-wing S-M chaotic attractors validate theoretical results and numerical simulations.

Key words nonlinear dynamic behaviors, multi-wing chaotic system, algebraic function, multisegment nonlinear function, circuit implementation

Received 19 April 2020, revised 30 June 2020.

^{*} The project supported by the Natural Science Foundation of Inner Mongolia Autonomous Region of China (2017BS0603).

[†] Corresponding author E-mail: meimeijia14@163.com